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Abstract. The multi-frame super resolution (SR) problem is to generate high
resolution (HR) images by referring to a sequence of low resolution (LR) im-
ages. However, traditional multi-frame SR methods fail to take full advantage of
the redundancy in LR images. In this paper, we present a novel algorithm using
a refined example-based SR framework to cope with this problem. The refined
framework includes two innovative points. First, based upon a thorough study
of multi-frame and single frame statistics, we extend the single frame example-
based scheme to multi-frame. Instead of training an external dictionary, we search
for examples in the image pyramids of the LR inputs, i.e., a set of multi-resolution
images derived from the input LRs. Second, we propose a new metric to find sim-
ilar image patches, which not only considers the intensity and structure features
of a patch but also adaptively balances between these two parts. With the refined
framework, we are able to make the utmost of the redundancy in LR images to
facilitate the SR process. As can be seen from the experiments, it is efficient in
preserving structural features. Experimental results also show that our algorithm
outperforms state-of-the-art methods on test sequences, achieving the average
PSNR gain by up to 1.2dB.

1 Introduction

The super resolution process of a LR image is inverse to the LR imaging process, during
which partial high-frequency information is lost. And for the SR problem, such loss
leads to non-unique solutions, making the problem ill-posed. Multi-frame SR methods
make use of their redundancy in LR information to constrain the solution space. The
problem is to reconstruct a HR image from a sequence of low-resolution images. In
the literature, these LR images can either be images acquired from the same scene but
slightly differ in viewing angles, or a sequence of consecutive video frames. A key point
in the former situation is that the LR images should be sub-pixel aligned. Integer pixel
alignment is meaningless because that supplies the same amount of information as the
single image. In consecutive video frames, information not included in one frame may

* This work was supported by National Natural Science Foundation of China under contract
No.61071082, National Basic Research Program (973 Program) of China under contract
No0.2009CB320907 and Doctoral Fund of Ministry of Education of China under contract
No0.20110001120117.

** Corresponding author.

S.Liet al. (Eds.): MMM 2013, Part I, LNCS 7732, pp. 403-413]2013.
(© Springer-Verlag Berlin Heidelberg 2013



404 W. Bai et al.

appear in adjacent frames. In a word, multi-frame SR approaches exploit redundancy in
input LRs for extra information and exchange temporal resolution for spatial resolution.

As current SR methods become more and more sophisticated, people demand more
details restored from the LR input. Details are high frequency information. To achieve
this, contemporary SR methods either apply pre-defined priori knowledge or refer to
a learned dictionary for external information. For example, Tsai and Huang [1]] pro-
posed the frequency domain method by transforming the LR image data into the dis-
crete Fourier transform (DFT) domain. Here the relationship between DFT coefficients
of LR and HR images can be considered as priori knowledge. Farsiu ef al. [2]] also pro-
posed an /;-norm regularization method based on a bilateral total variation. However,
the performance of these methods degrades rapidly when applied with a large magni-
fication factor, which constrains their application. In recent years, example-based SR
methods draw tremendous attention around the world because of their simplicity and
potential to break the upper bound of magnification factor compared with the afore-
mentioned algorithms. They usually depend on extra information provided by an image
database. Freeman et al. [3] estimated high frequency details from a large training set
of HR images that encode the relationship between HR and LR images. Glasner ef al.
verify the internal similarity in natural images statistically in [4], meaning that it is fea-
sible to perform the example-based SR from a single image. However, these methods
fail to take into consideration the structural features while exploiting examples for extra
information.

The foundation of example-based SR is the recurrence of small image patches in
different resolutions. These HR/LR pairs indicate how the input LR patches be super
resolved. A typical example-based SR algorithm [4] is presented in the following steps:

— Let L be the LR image while H is the HR image. B is the blur kernel. Thus the
imaging model is formulated as:

Li(p)=H=+B;= Y H(q) Bj(g —q) (1)
QiESB]-

where p is a pixel in the LR image, corresponding to ¢ in the HR image. And the
HR pixels ¢; belong to the support of kernel B, which centers at q.

— Down-sample the input image L to a cascade of scales, comprising an image pyra-
mid with multiple resolutions.

— For each patch in L, search for similar patches in the above image pyramid. If the
similar patches are in lower scales than the input scale, their parent patches are
of higher resolution, thus providing examples for the upsampling of the LR patch.
Similar patches of the same scale as the input scale also count. By fitting these
parent patches or similar patches in the imaging model, the solution space of (D) is
constrained.

In this scheme, apparently, it is very important to find plausible examples with enough
information, especially when we are handling the multi-frame SR problem. Similar
patches recur in multiple frames, more frequent than in a single frame according to
the statistics, making example-based method a proper choice. Grounding on this, we
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propose a new metric to search for reliable examples whereas lower the search cost at
the same time. Our method, REESE (refined exploration of extensive self-examples),
takes into account of the structure feature and intensity feature of a local image patch
and search its nearest neighbors in a multi-frame and multi-resolution image set, which
is derived totally from the input images. With all the similar patches constraining the
final HR result, we utilize numerical method to solve the least square problem. Experi-
ments show the superiority of our method, which not only magnifies images efficiently
but also preserves the structure details better.

The rest of this paper is organized as follows: Section [2] describes each part of the
proposed algorithm in detail. Experimental results are shown in Section[3] Finally, con-
cluding remarks are given in Section 4l

2 Proposed Multi-frame SR Algorithm

2.1 Motivation and Algorithm Framework Overview

According to the prior work that patches recur in a image pyramid, we can easily de-
duce that multiple frames can provide more similar patches. Fig.1 demonstrates this
assumption by comparing the possibilities to find a certain number of similar patches
in a single frame and multi-frame at different scales. The horizontal axis shows the
number of similar patches found in a frame or frames while the vertical axis indicates
the corresponding percentage of input patches. Thus we can come to the aforemen-
tioned conclusion that it’s reasonable to introduce the self-similarity property to solve
the multi-frame SR problem.
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Fig. 1. Comparison of the amount of similar patches found in single frame and multi-frame,
searched at different scales

Motivated by the existence of extensive examples in multiple frames, we propose an
algorithm which follows the process illustrated in Fig2l For the convenience of expres-
sion, the input LR images are represented as {..., Lgil, Ly, L3, .}, and LY is the
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to-be-magnified image. The down-sampled images are denoted as {..., L" tpm &> Lﬁzl,
..}, k =1,2,3, ..., where the down-sampling scale is =%, & > 1. In order to get the
corresponding HR image, L}, we need to solve a least square problem. Generally, it can
be presented as:

min(B x Ly | —L§)?, )

where | denotes the down-sampling process.

At essence, the fundamental idea is for the patch at every pixel of Lg, we search
for its similar patches in both {..., Lgil,Lg,LgH, ..} and {..., Lﬁ;l,Lﬁk,Lﬁzl,
...}. Theoretically, a global search for similar patches needs to be done at each pixel
in the to-be-super-resolved image, L{j. However, it is a huge amount of calculation to
do a global search, which is very time-consuming. So we can take a pre-processing
step before the search part. This method is elaborately described in [3]], using a motion
estimation process to relocate the search window, thus reducing search cost. Then the
similar patches in {..., L§ ™', Ly, L0, ...} and the parent patches of those in {...,
L’j;l, Lr,, LT,gl, ...}, as the blue line show in the diagram, will render constraints on
the final HR image in (2)), resulting in an optimal solution.
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Fig. 2. The framework of the proposed multi-frame SR algorithm

2.2 Structure-Preserving Similarity Measure

In previous work, patch similarity is measured by GW-SSD, which is short for gaussian-
weighted SSD (sum of squared difference). It assigns greater weight to pixels that are
closer to the center of the patch. However, this is not enough to find the most struc-
turally similar patches. GW-SSD just discriminates centering pixels from peripheral
pixels, ignoring different structural features of each patch. Thus, we introduce a new
similarity measure to define the distance between two patches. It takes both intensity
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similarity and structure similarity into consideration, corresponding to the two terms in
the following formulation, respectively.

diSt(Pml,y1’P12,y2) =A- di(PJ/’l,vaIz,yz) + (1 - >‘) : dS(PJ/’l,vaIz,yz)a (€)]

where Py, ,, and Py, ,, are two patches centered at the pixel (z1,y1) and (z2,y2).
dist(Py, y,, Pz, y,) represents the distance between the two patches. d; is the intensity
term, while dy is the structure term. A is a parameter to weight the two terms which
depends on the complexity of the image to be super resolved. The conventional GW-
SSD is utilized to calculate the intensity distance:

di(Puyy1 Posys) = ZGJ Py (7,Y) = Puy s (xvy))Q’ 4)
z,y

where G, stands for the gaussian kernel, which is the same size as the patches.

As to the structure similarity measure, we utilize the covariance matrix to extract
the local structure feature of the patches. A covariance matrix can reflect to what extent
neighboring pixels rely on each other. In other words, it implicitly indicates the structure
of a local area. The method of calculating the covariance matrix is stated below.

1. Let P, , denote a patch centered at the point (z,y) in Lj. For each pixel in P, ,,
we build a sample vector V;. Take point (z, y) (the 3-tagged pixel) for example, as

shown in Fig[3] the pixels tagged from number 1 to 5 compose the elements of the
sample vector. Note that, V; is a 1 x 5 row vector.

O 0 00O
O 0,0,0 O

Fig. 3. Formation of sample vectors

2. Assume the patch size to be N x N, i.e. N2 pixels. Their sample vectors are denoted
as V;,i =1,2,3,..., N2, so the patch vector Vz,y can be written as:

Vx,y = (5)
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3. Then we calculate the self-covariance matrix of P, ,’s sample vector V, ,, repre-
sented as C,, ,. Finally the structure similarity measure is formulated as:

ds(Pryy1s Pas,yz) ZG Coyn (,y) — sz,yz(xay))z- (6)

After we get the intensity and the structure term, the weight parameter \ is applied
as mentioned before. In practice, the distance changes as the value of A varies, mak-
ing a fixed X\ inappropriate. Thus, considering the impact of parameter selection, we
adaptively choose A based upon the smoothness of an image patch. If the patch is not so
smooth, i.e., there are plenty of textures, the weight of the structure term should be mag-
nified. In [6]], the gradient strength in two perpendicular directions is used to measure
the smoothness of local image patches.

Z S(x,y) = Z VL(z,y) VL(z,y)7, 7

(96 y)Eb; (1 y)EDb;

In the above equation, n; stands for the number of pixels in block b;. Let )\gi) and

)\g) denote the eigenvalues of matrix .S;, which represent the gradient strength then the
smoothness s; of a block b; is defined as:

si = M|+ A9, ®)

Thus, the weight parameter A can be formulated as follows with ;. a constant.

A =exp (— 2?2) , 9

2.3 Solving the Weighted Least Square Problem

We use the metric described in Sec2.2]to exploit similar patches. These patches differ
slightly in content, thus resulting in different contribution to the eventual HR patch. So
we give them weights as follows, where P, ,, is the reference patch in Ly and o is a

parameter.
dist(Py, yl,Px,y)), (10)

weightp, , = G, * exp ( 902

Considering the difference between similar patches, the aforementioned least square
problem is further extended to a weighted least square problem, shown as below:

min;(B*LZ L —LHTW(B L} | —LY), (11

where W is a diagonal matrix, composed of each patch’s weight calculated by eq.(10).
Thus, we see that we have weighted constraints at the unknown pixels of the images
in the higher resolution image L}’ and we can use gradient descent or other numerical
methods to solve the weighted least square problem.
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3 Experimental Results

The experiments are performed using MATLAB R2010a on Intel Core CPU 2.4GHz
Microsoft Windows platform. All the test image frames are blurred and decimated by a
factor of 1:2 (in each axis), and then contaminated by an additive noise with standard
deviation 2.

To demonstrate the validity of our proposed method, we first test on single images
to perform single image SR. The size of the patch is set as 5*5, and the cascade of
low-resolution images is simplified to a 1/2 size reduced one of the input image. In
Table [Tl we compare our result (S-REESE, single image REESE) with those obtained
by Bicubic, [4], and [[7], which are relatively state-of-the-art methods that can be found
in the literature.

Specifically, since we utilize a similar self-similarity framework with the one in [4]],
we compare our results with Glasner’s to verify that the proposed new metric for simi-
larity does work. We zoom to see the details of HR images super resolved by Glasner’s
method and the proposed method, as Figl5] shows. We see that by our algorithm the
jaggy effect is reduced and the edges are clearer.

Fig M presents another group of results obtained by KR, Jurio’s [8] and the proposed
algorithm S-REESE. When we zoom in to see the details (best viewed on screen), for
example, as presented in Lena, we can see that KR over-smoothes the image in contrary
to Jurio’s, which over-sharps the image even to render jaggies. Our method seeks to
balance between smoothness and sharpness.

Then we implement the complete version of the proposed algorithm, i.e., for the in-
put video sequence, we enhance each frame’s resolution with reference to its adjacent
frames. The efficiency of the proposed multi-frame super resolution algorithm is evalu-
ated both objectively and subjectively. In the objective part, we compare the PSNRs
(average of 5 frames in the experiment) of different image sequences obtained by

Table 1. PSNR (dB) Comparison of Different Methods on Single Image Implementation

Images Bicubic KR [7] Glasner’s [4] S-REESE (vs. Glasner’s)

House 31.29 32.00 31.82 32.85(+1.03)
Cameraman 25.17 25.46 26.18 26.36(+0.18)
Elaine 32.20 31.89 31.92 32.51(+0.59)
Boat 28.80 29.16 29.16 30.05(+0.90)
Bridge 25.78 25.59 26.03 26.69(+0.66)
Car 29.58 30.01 29.99 30.91(+0.92)
Clock 28.81 29.36 29.78 30.37(+0.59)
Peppers 29.44 30.14 30.10 31.17(+1.07)
Ship 29.42 30.23 30.29 31.04(+0.75)
Window 21.74 21.69 22.62 22.84(+0.22)

Average 28.22 28.55 28.79 29.48(+0.69)
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Table 2. Average PSNR (dB) Comparison of Test Sequences

Sequences Bicubic 3DKR S-REESE REESE

Ice 30.58 31.12 33.24 3343
Soccer 27.85 28.25 29.17 29.26
Harbour 23.35 23.86 24.63 24.70
City 26.82 27.43 27.87 27.90
Foreman 31.36 32.68 33.46 33.62
Crew 30.16 30.80 32.40 3245
Average 28.35 29.02 30.13 30.23

different methods. To add, 3DKR [7]] is the mutli-frame version of KR and the sin-
gle frame REESE is also listed to demonstrate the superiority of multiple frames, as

indicated below in Table 2l
Figlf] are interpolated results on the video by different methods. For the Foreman

sequence, our algorithm obtains better result visually with a PSNR of 34.18 dB, achiev-
ing a 1.2 dB gain compared with the KR algorithm while for City, our algorithm also
obtains better result visually with a PSNR of 27.94 dB, achieving a 1.07 dB gain.

el
Sefujoniten

(d) Jurio’s (e) KR (f) S-REESE

Fig. 4. Results of our algorithm compared with other methods
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-

(j) Bicubic (k) Glasner’s (D) S-REESE

Fig. 5. Comparison of results obtained by Glasner’s and S-REESE on test images



412 W. Bai et al.

(a) Original

(c) 3DKR, PSNR=32.98dB (d) REESE, PSNR=34.18dB

(g) 3DKR, PSNR=27.51dB (h) REESE, PSNR=27.94dB

Fig. 6. Comparison of different SR methods on sequence Foreman
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4

Conclusions

In this work, based on example-based SR framework, we focus on how to find more
reliable similar patches. Considering the inadequacy of contemporary example-based
methods, we propose a novel method for similar patch exploration. Another contri-
bution of this work is we incorporate multiple frames to enrich the details of the HR
images while keeping computing cost as low as possible. Experimental results are free
of jaggies and of high quality.
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