Segment Anything

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, Ross Girshick

> STRUCT Group Seminar Presenter: Yexiang Cheng 2023.04.16

OUTLINE

- Authorship
- Background
- Method
- Experiments
- Conclusion

BACKGROUND: Transformer

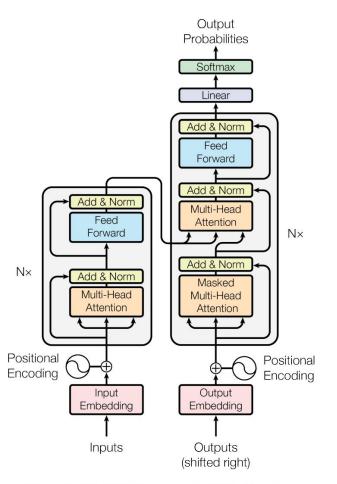
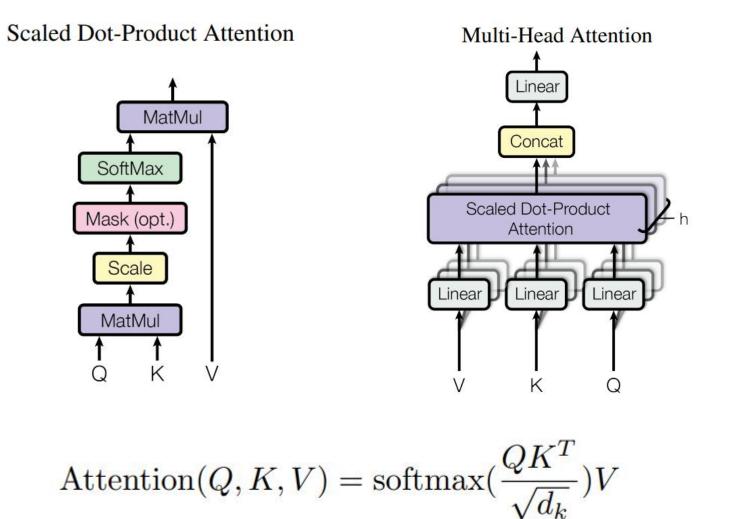
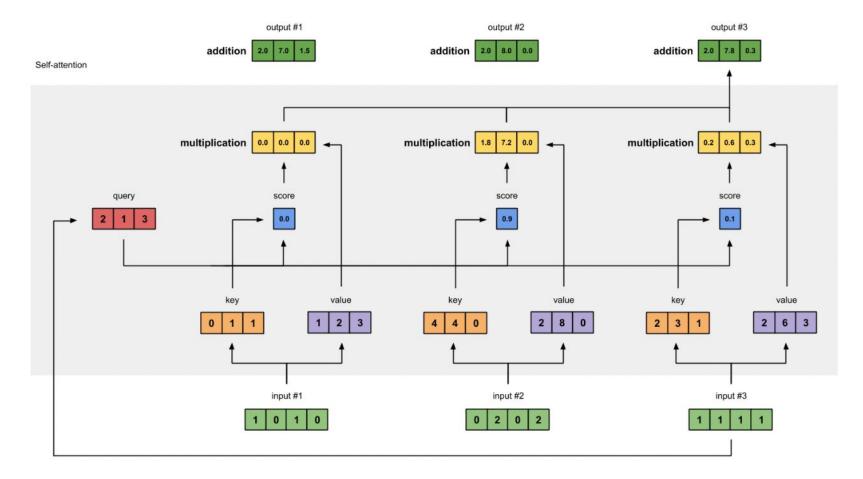


Figure 1: The Transformer - model architecture.

BACKGROUND: Transformer



BACKGROUND: Transformer

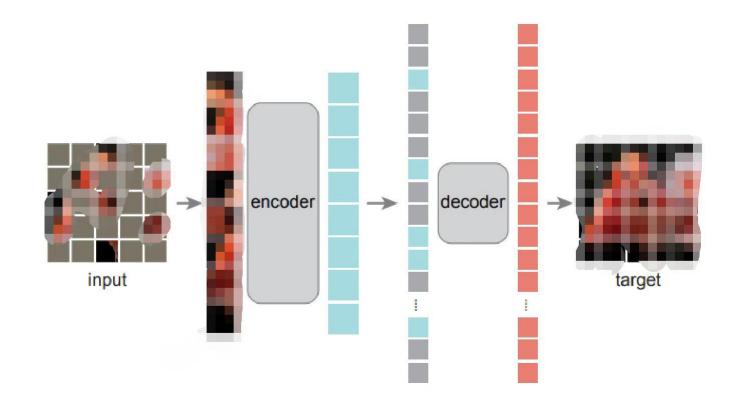


From Illustrated: Self-Attention. A step-by-step guide to self-attention... | by Raimi Karim | Towards Data Science

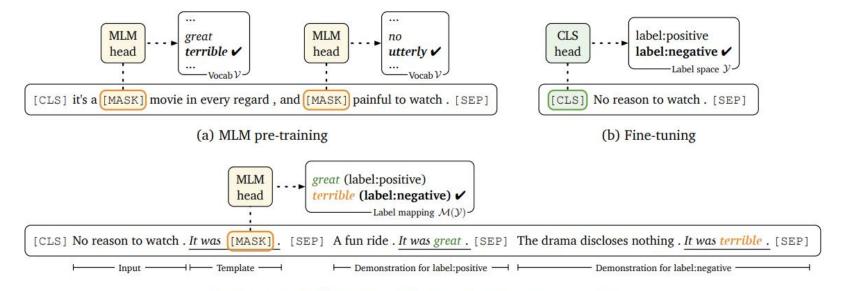
BACKGROUND: Vision Transformer



BACKGROUND: Masked Autoencoder



BACKGROUND: Prompt engineering



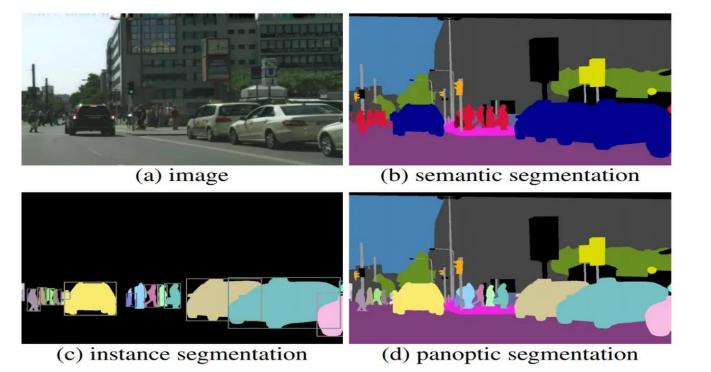
(c) Prompt-based fine-tuning with demonstrations (our approach)

Figure 1: An illustration of (a) masked language model (MLM) pre-training, (b) standard fine-tuning, and (c) our proposed LM-BFF using prompt-based fine-tuning with demonstrations. The underlined text is the task-specific *template*, and colored words are *label words*.

BACKGROUND: Image Segmentation

The process of partitioning a digital image into multiple image segments

- Semantic segmentation
- Instance segmentation
- Panoptic segmentation

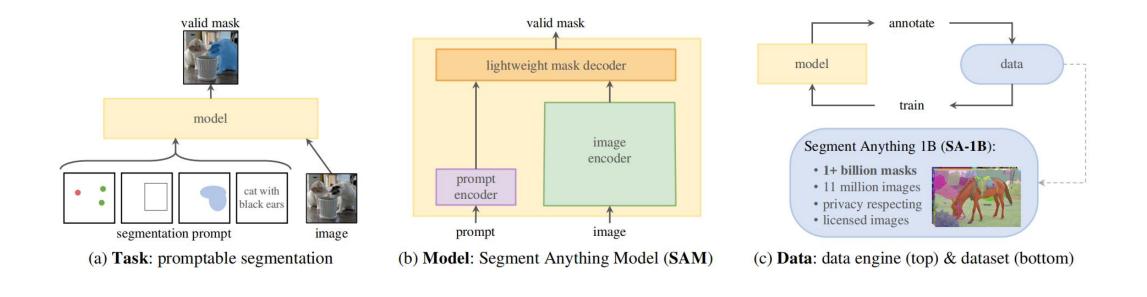


16

OUTLINE

- Authorship
- Background
- Method
- Experiments
- Conclusion

Overview



Overview

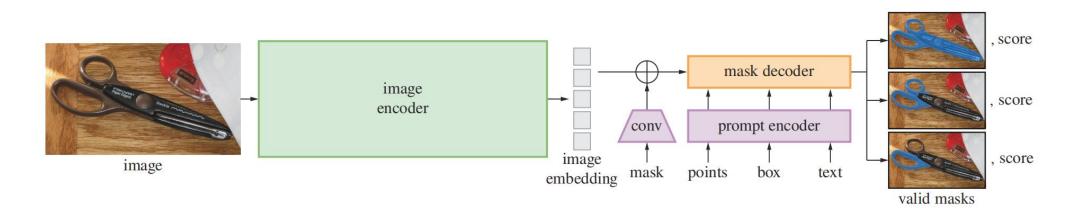


Image encoder: MAE pre-trained ViT

Prompt encoder:

- (1) Points and boxes: positional encodings + learned embeddings for each prompt type
- (2) Text: text encoder from CLIP
- (3) Dense prompts(such as masks): embedded using convolutions

Mask decoder: A modification of a Transformer decode block followed by a dynamic mask prediction head

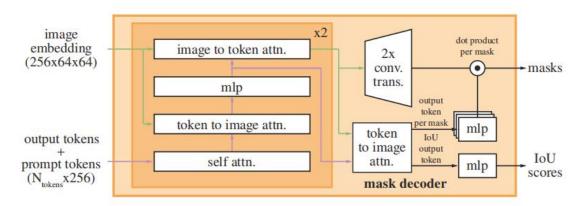


Figure 14: Details of the lightweight mask decoder. A two-layer decoder updates both the image embedding and prompt tokens via cross-attention. Then the image embedding is upscaled, from which the updated output tokens are used to dynamically predict masks. (Not illustrated for figure clarity: At every attention layer, positional encodings are added to the image embedding, and the entire original prompt token (including position encoding) is re-added to the token queries and keys.)

Dataset Engine

• Assisted-manual stage

A team of professional annotators do interactive segmentation.

• Semi-automatic stage

Annotators annotate the objections that were not detected by the model.

• Fully automatic stage

Model generates masks without annotator input.

Responsible AI analysis

		SA	-1B	9	% images			
# cou	# countries		#masks	SA-1B	COCO	O.I.		
Africa	54	300k	28M	2.8%	3.0%	1.7%		
Asia & Oceania	70	3.9M	423M	36.2%	11.4%	14.3%		
Europe	47	5.4M	540M	49.8%	34.2%	36.2%		
Latin America & Carib.	42	380k	36M	3.5%	3.1%	5.0%		
North America	4	830k	80M	7.7%	48.3%	42.8%		
high income countries	81	5.8M	598M	54.0%	89.1%	87.5%		
middle income countries	108	4.9M	499M	45.0%	10.5%	12.0%		
low income countries	28	100k	9.4M	0.9%	0.4%	0.5%		

	mIol	J at		mIoU at			
	1 point	3 points		1 point	3 points		
perceived gender presentation			perceived skin tone				
feminine	54.4 ± 1.7	90.4 ± 0.6	1	$52.9{\scriptstyle\pm2.2}$	91.0 ± 0.9		
masculine	55.7±1.7	90.1 ± 0.6	2	51.5 ± 1.4	91.1 ± 0.5		
perceived a	ge group		3	52.2 ± 1.9	91.4 ± 0.7		
older	$62.9{\scriptstyle\pm 6.7}$	92.6 ± 1.3	4	51.5 ± 2.7	91.7 ± 1.0		
middle	54.5 ± 1.3	90.2 ± 0.5	5	52.4 ± 4.2	92.5 ± 1.4		
young	$54.2{\scriptstyle\pm2.2}$	91.2 ± 0.7	6	56.7 ± 6.3	91.2 ± 2.4		

OUTLINE

- Authorship
- Background
- Method
- Experiments
- Conclusion

Zero-Shot Single Point Valid Mask Evaluation Task

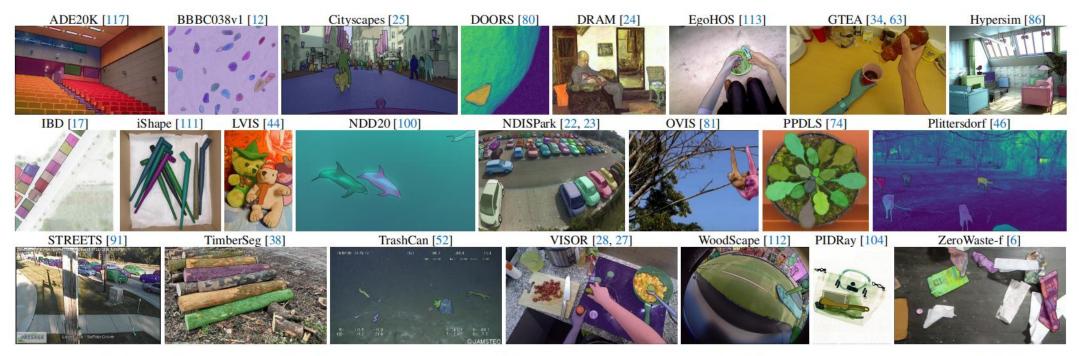


Figure 8: Samples from the 23 diverse segmentation datasets used to evaluate SAM's zero-shot transfer capabilities.

Zero-Shot Single Point Valid Mask Evaluation Task

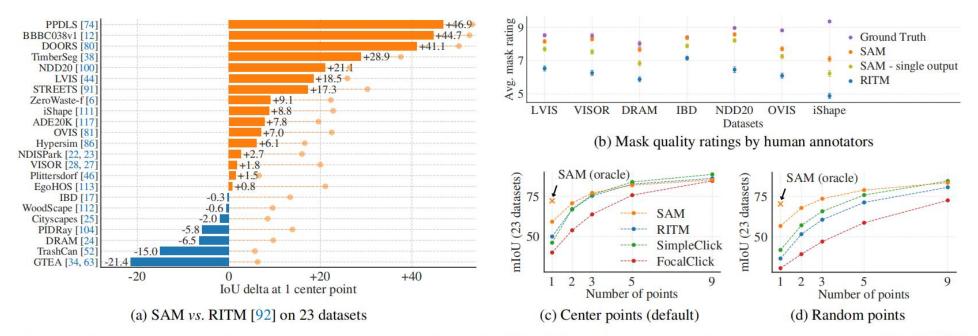


Figure 9: Point to mask evaluation on 23 datasets. (a) Mean IoU of SAM and the strongest single point segmenter, RITM [92]. Due to ambiguity, a single mask may not match ground truth; circles show "oracle" results of the most relevant of SAM's 3 predictions. (b) Per-dataset comparison of mask quality ratings by annotators from 1 (worst) to 10 (best). All methods use the ground truth mask center as the prompt. (c, d) mIoU with varying number of points. SAM significantly outperforms prior interactive segmenters with 1 point and is on par with more points. Low absolute mIoU at 1 point is the result of ambiguity.

Zero-Shot Edge Detection

Figure 10: Zero-shot edge prediction on BSDS500. SAM was not trained to predict edge maps nor did it have access to BSDS images or annotations during training.

method	year	ODS	OIS	AP	R50
HED [108]	2015	.788	.808	.840	.923
EDETR [79]	2022	.840	.858	.896	.930
zero-shot transfe	r methods:				1
Sobel filter	1968	.539	-	-	-
Canny [13]	1986	.600	.640	.580	
Felz-Hutt [35]	2004	.610	.640	.560	-
SAM	2023	.768	.786	.794	.928

Table 3: Zero-shot transfer to edge detection on BSDS500.

Zero-Shot Object Proposals

method	mask AR@1000						
	all	small	med.	large	freq.	com.	rare
ViTDet-H [62]	63.0	51.7	80.8	87.0	63.1	63.3	58.3
zero-shot transfer n	nethods.						
SAM – single out.	54.9	42.8	76.7	74.4	54.7	59.8	62.0
SAM	59.3	45.5	81.6	86.9	59.1	63.9	65.8

Table 4: Object proposal generation on LVIS v1. SAM is applied zero-shot, *i.e.* it was not trained for object proposal generation nor did it access LVIS images or annotations.

Zero-Shot Instance Segmentation

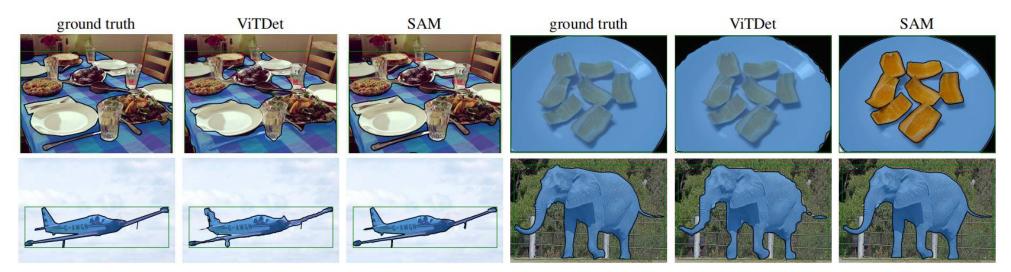


Figure 16: Zero-shot instance segmentation on LVIS v1. SAM produces higher quality masks than ViTDet. As a zero-shot model, SAM does not have the opportunity to learn specific training data biases; see top-right as an example where SAM makes a modal prediction, whereas the ground truth in LVIS is amodal given that mask annotations in LVIS have no holes.

Zero-Shot Instance Segmentation

		COCO [66]			LVIS v1 [44]			
method	AP	AP ^S	AP^M	APL	AP	APS	APM	APL
ViTDet-H [62]	51.0	32.0	54.3	68.9	46.6	35.0	58.0	66.3
zero-shot transf	er meth	nods (se	gmenta	tion mo	dule on	ly):		
SAM	46.5	30.8	51.0	61.7	44.7	32.5	57.6	65.5

Table 5: Instance segmentation results. SAM is prompted with ViTDet boxes to do zero-shot segmentation. The fullysupervised ViTDet outperforms SAM, but the gap shrinks on the higher-quality LVIS masks. Interestingly, SAM outperforms ViTDet according to human ratings (see Fig. 11).

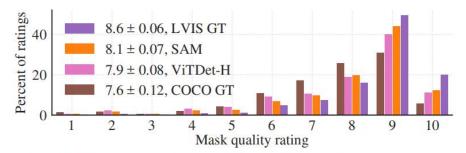


Figure 11: Mask quality rating distribution from our human study for ViTDet and SAM, both applied to LVIS ground truth boxes. We also report LVIS and COCO ground truth quality. The legend shows rating means and 95% confidence intervals. Despite its lower AP (Table 5), SAM has higher ratings than ViTDet, suggesting that ViTDet exploits biases in the COCO and LVIS training data.

Zero-Shot Text-to-Mask



Figure 12: Zero-shot text-to-mask. SAM can work with simple and nuanced text prompts. When SAM fails to make a correct prediction, an additional point prompt can help.

Ablations

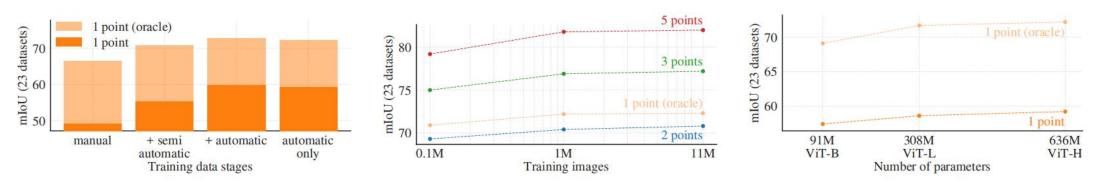
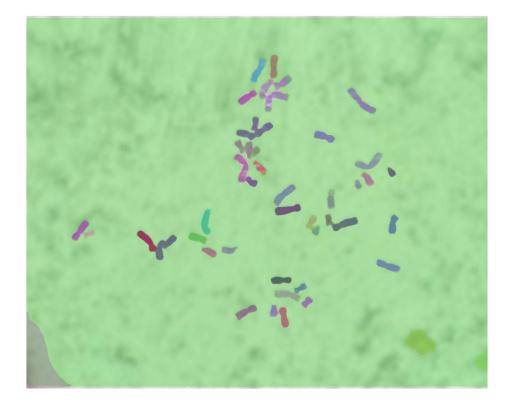


Figure 13: Ablation studies of our data engine stages, image encoder scaling, and training data scaling. (Left) Each data engine stage leads to improvements on our 23 dataset suite, and training with only the automatic data (our default) yields similar results to using data from all three stages. (Middle) SAM trained with ~10% of SA-1B and full SA-1B is comparable. We train with all 11M images by default, but using 1M images is a reasonable practical setting. (Right) Scaling SAM's image encoder shows meaningful, yet saturating gains. Nevertheless, smaller image encoders may be preferred in certain settings.

Other attempts

Other attempts





Other attempts

[seg result]

a man wearing a red plaid coat

a man wearing a fashion green inner T-shirt

From https://github.com/IDEA-Research/Grounded-Segment-Anything

Other attempts

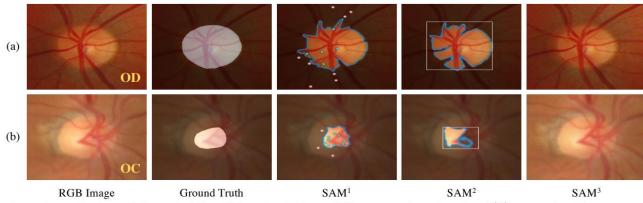


Figure 12. Application on **joint optical disc (OD) and optical cup (OC) segmentation**, where $SAM^{1/2/3}$ mean using Click, Box, and Everything modes respectively. Here SAM^3 does not generate any results on these cases.

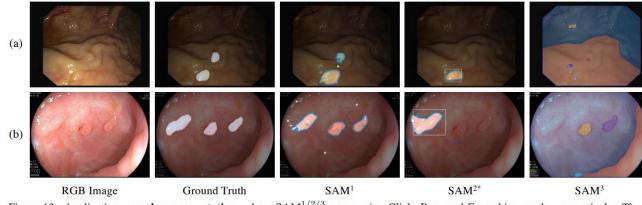


Figure 13. Application on **polyp segmentation**, where $SAM^{1/2/3}$ mean using Click, Box, and Everything modes respectively. The * indicates the SAM results within a box prompt.

From arXiv:2304.05750

OUTLINE

- Authorship
- Background
- Method
- Experiments
- Conclusion

CONCLUSION

- Lift image segmentation into the era of foundation models
- A new task: promptable segmentation
- A new dataset: SA-1B
- Wide range of downstream tasks

Thanks for listening!