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Slot Attention (1/4)

* Object-Centric Learning with Slot Attention (NeurIPS 2020)

k, v ATTENTION:

SLOTS COMPETE
FOR INPUT KEYS

» Task: unsupervised object discovery, i.¢.,
uncovering patterns that define objects and

discriminates them against the background.

* More specifically, seperate an image to sets of

pixels.

FEATURE MAPS
+ POSITION EMB.

(.- | |8
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Slot Attention (2/4)

 Slots: Latent vector that describe a single object

SLOT ATTENTION /-

SISl ). | ' .

P T composite
> : II====I SLOT ° —
Al IEE% Ll DECODER ‘

—
* Encoder: Vanilla CNN, ResNet, etc. Output features of size D,,,,.,*H,*W,

* Slot attention module. Output & slots, each with size D,

1) Sampling: Sample all object latents (i.e., slots) from the same prior distribution to encourage
representational uniformity across all slots. slots ~ N (u, diag(c)) € RE X Psiets

2) Binding: Bound each slot to an object region via an attention mechanism.

3) Updating: Each slot gets updated by the bound object features to specialize for that object.

* Decoder: TransposeConvNets. Given a slot latent, broadcast it into an 1nitial size (e.g, 8*8),

then upsample to the original size. For each slot, output: 4*H*IW (R, G, B, alpha). Alpha is a
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mask for compositing slots and determine the attribution of pixel.



Slot Attention (3/4)

* Primary Idea: Attention machanism
» Slots compete for explaining parts of the input

» Slots as queries

add positional encoding

* Features as keys&values (per input position, extracted by

CNN, with positional embeddings)
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Slot Attention (4/4)

* Pseudo code for attention module

1: Input: inputs € RY*Puwts slots ~ N (u, diag(c)) € REXPsiors
2: Layer params: k, ¢, v: linear projections for attention; GRU; MLP; LayerNorm (x3)

3:  inputs = LayerNorm (inputs)

4: fort=0...T

e slots_prev = slots

6: slots = LayerNorm (slots)

% attn = Softmax (%k(inputs) . q(slots)?, axis=‘slots’) # norm. over slots
8: updates = WeightedMean (weights=attn + ¢, values=v(inputs)) # aggregate
9 slots = GRU (state=slots_prev, inputs=updates) # GRU update (per slot)
10: slots += MLP (LayerNorm (slots)) # optional residual MLP (per slot)

11: return slots

LayerNorm: Normalize feature instead of batch
GRU: Gated Recurrent Unit (RNN with gates, similar to LSTM)
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Slot Attention in 3D (1/1)

* Unsupervised Discovery of Object Radiance Fields (ICLR 2022)

L. Object-centric latent inference I1. Object radiance fields I11. Re-composing and re-rendering

Training on multiple scenes

|
= Compose LOSS "')
= & Render
Object o0 Re-rendered Reference
latents it
: Object nference on unseen new scenes
@ Cond. NeRF m
A M\ =

Input image Backg. Backg.
laten’i Cond. NeRF

Smgle forward pass

New scene Segment Novel view  Edit

Single image NeRF for scene editing & synthesis
* @Given a single reference image, extract slot latents for scence segmentation,

decompostion, etc.
e (Condition NeRF on the slot latent

* Trained on reconstruction loss




Slot Attention 1n 3D (2/2)

e NeRF Overview

5D Input Output Volume Rendering
Position + Dirgctian Calor + Density Rendering Loss
b (X326 RGBo)
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* Volume rendering

Clr) = /:f T(t)o(x(t))e(x(t), d)dt, where T(t) :eXp(— /tt a(r(s))ds).
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Slot Attention: Conclusion

SLOT ATTENTION /-

-

\—/

T composite
| 6 |

One sentence summary: use slots to explain objects.

Problems of slot attention

* Slot i1s a mixture of object information =  How to disentangle "slot"?
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Method: Overview (1/6)

@ I--Ip
[S.Isllss|[S SI| | II 2 1S, |
P L

O
E ! I. Training via
- "= L, Loss
» B
CNN Translation and Scale Invariant Reconstruction &
Image Encoder Invariant Slot Attention SB Decoder Emergent Segmentation

* Disentangle slot s appearance with its position, scale, and rotation.

* Specifically, learn the position, scale, and rotation (S, S, S,) of each slot

Sp < szss < Rzas'r S [Ovﬂ-]

* As aresult, slot feature 1s invariant to position, scale, and rotation.
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Method: Invariance to Translation and Scaling (2/6)

 In original slot attention, we add positional encoding to each input feature

» Relative positional encoding for each slot (K slots in total)

rel_grid® = (abs_grid — Sy) /Sy ke{l,.. K}
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input features relative positional encoding



Method: Invariance to Translation and Scaling (3/6)

Obtain slot keys and values
keys" = f (lC(iﬂputs) + g(rel_gridk))

values® = f (V(inputS) + g(rel_gridk)>

Obtain attention and updates
Update slots by GRU

Update slots’ position and scale latent

g _ 22;1 attn,, * abs_grid,,

g SV attn,

SN (attn, + €) * (abs_grid,, — S,)2
SN (attn, + €)

By =

Intuitive explanation: move slot to the place with higher attention

add slot-specific
positional encoding
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Method: Invariance to Rotation (4/6)

* Encode rotation (S,)

* Heuristic: the orientation of a slot is given by the axis with the highest variation
v¥, vE = WeightedPCA (abs_grid, attn®)  eigenvector of the covariance matrix

Y, 05 = post-process (vf,v5)

.
Sf[ﬁf k| .
]

rel_grid = [S,” ' (abs_grid — S,)] / (Ss % 6)
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* Author’s claim: Not effective enough

* My opinion: Unreasonable to encode rotation in 3D by 2D rotation matrix



Method: Decoding (5/6)

* Decode each slot
* Calculate rel grid for current slot
* Spatially broadcast slot with relative positional encoding

* Decode the RGB value and alpha mask (an image per slot)
(R,G,B,a) = Dy(SB + h(rel_grid)) rel_grid® = (abs_grid — S;f) /85

* Alpha composite the images

relative
broadcast positional encoding decode




Algorithm 1 Translation, Rotation, and Scaling Invariant Slot Attention.

Inputs: inputs € RVN*Pinvuts abs_grid € RV*2, slots € RE *Dstors_ Slot positions, S, € RE*2,
Slot rotations, S, € RE*2%2_§]ot scales, S, € REX*2 T iterations, small e.

Data: Encoders f, g, k, v, q, parameters of LayerNorms, MLP and GRU, .
Outputs: slots € REXDatet, § ¢ REX2 G ¢ REX2X2 g ¢ REX2

1: inputs = LayerNorm(inputs)

2: fort =1to7 + 1do

3:  slots_prev = slots

4:  slots = LayerNorm(slots)

# Computes relative grids per slot, and associated key, value embeddings.
rel_grid = [S, ! (abs_grid — Sp)] / (Ss X 6)
keys = f (k(1nputs) + g(rel_grid))

values = f (v(inputs) + g(rel_grid))

o 1 O L

9:  # Inverted dot production attention.

10:  attn = softmax(\/%keys % q(slots)T', axis = “slots™)
11:  updates = WeightedMean(weights = attn, values = values)

12:  attn /= Sum(attn, axis = “inputs”)

13:  # Updates S,, S, and slots.

14: | S, = WeightedMean(weights = attn, values = abs_grid)

15: | S, = Symmetrize(WeightedPCA Analytical(inputs = abs_grid — S, weights = attn)
16;: | &= \/WeightedMean(weights = attn + ¢, values = [S; ' (abs_grid — S,)]2)

17: ift <71 + 1 then

18: slots = GRU(state = slots_prev, inputs = updates)
19: slots += MLP(LayerNorm(slots))

20: endif

21: end for

Method (6/6)
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Eeperiments (1/6)

Datasets * Evaluation Protocol
e Tetrominos e Qualitative
* Objects Room * Quantitative (FG-ARI)
* MultiShapeNet
« CLEVR
« CLEVR Tex

Waymo Open (real-world, only for qualitative)
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Eeperiments (2/6)

* Rand Index: Calculate the similarity between two partitions of a set

Given a set of n elements S = {o1,. .., 0, } and two partitions of S to compare, X = {X7,..., X, }, a partition of Sinto
rsubsets, and Y = {Y7,...,Y;}, a partition of Sinto s subsets, define the following:

e a, the number of pairs of elements in .S that are in the same subset in X and in the same subset in Y’
e b, the number of pairs of elements in S that are in different subsets in X and in different subsets in Y’
e ¢, the number of pairs of elements in S that are in the same subset in X and in different subsets in Y

e d, the number of pairs of elements in S that are in different subsets in X and in the same subset in Y’

The Rand index, R, is:['2]
atb a+b

Ca+bte+d (™)

* Adjusted Rand Index:

N Y Y, oo Y, | sums
X1 nn om0 ny | oag
Xy |mo1 moy -+ Mo | A
Xr N1 N2 et Mg ar

sums b1 b2 8 bs

Definition [edit]

The original Adjusted Rand Index using the Permutation Model is
i (D - 2@ G/ 6
s @+o®-[Z oSG/ 6

ARI =
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Experiments: Quantitative (3/6)

Table 1|CLEVRTex|FG-ARI(%) results on the test set, CAMO
set (objects and backgrounds blend together) and OOD set (novel
textures). Prior results taken from (Karazija et al., 2021) use 3

random seeds, we use 10 random seeds. FG-ARI is reported in %.

For MSE please see the Table 8. (CNN) refers to models using a
4-layer CNN backbone, while (ResNet) models use a ResNet-34.

Method Main CAMO O0OOD

SPACE 17.5 41 10.6 £21  12.7 +3.4
31 | 799 1.4 729119 73.7 £1.0
AST-Seg-B3-CT 94.8 +05 87.3 +38 83.1 +o.s
SA (CNN) 4.9 1.6 03.0 2118 542 126
ISA-T (CNN) 66.8 +5.7 65.0 £49 65.1 +as
ISA-TS (CNN) i8.8439 (29435 7T3.2431
SA (RegNet) 91.3 127 84.9 +t29 81.4 +1.4
ISA-T (ResNet) 87.4 +t6.6 79.0 £5.9 78.6 +4.9
ISA-TS|(ResNet) 92.9 104 86.2 +08 84.4 103

* Rotation invariance does not bring
consistent improvement

Table 2. Rotation invariance: Comparing ISA-TS against ISA-
TSR in various benchmarks. Objects Room results are ARIs
whereas all others are FG-ARIs. Remaining benchmarks eval-
uations are in the appendix Table 4.

(FG-)ARI 1

Dataset ISA-TS | ISA-TSR
Objects Room (w/ bg) Val. 85.5 +6.6 84.3 +456
CLEVR 98.9 102  98.0 0.9
MultiShapeNet

- All Data 09.8 £11  T7.7 +5.5
- Four Objects 86.5 +1.1  80.7 +6.4
CLEVRTex (CNN) 78.8 £39 79.6 +5.5
CLEVRTex (ResNet) 92.9 t04 93.3 +o.7
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Experiments: Qualitative (4/6)

* ISA-T improves OOD robustness * Qualitative results on MultiShapeNet

Training SA Segmentation ISA-T Segmentation Original image Translate Rotate Scale

Testing

* Qualitative results on Waymo open

Original Decoding Translate Car Scale Shadow Scale Building Scale Horizon
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Experiments: Reproduction (5/6)

* Cannot guarantee one slot represent one object
* No explicit control on background (multiple background slot)
* Cannot handle occulusion (general problem for 2D methods)

» Undesirable reconstruction result on edges (e.g, tend to smooth sharp edges)
Image Recon. Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

Image Recon. Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

.. p ¢ v BT |
g

Slot 7

Slot 7
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Experiments: Reproduction (6/6)

* Results for translation and scaling

Recon. Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6 Slot 7

. . “ I. &

| |
Recon. Slot 1 Recon. Slot 1 Recon. Slot 1

translate translate, scale®1.5 translate, scale*2
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Conclusion

Pros
* The authors proposed invariant slot attention, a novel approach for obtaining object-
centric representations from 2D single image

Cons
* Position and scale are defined in the image plane, while objects position is 3D
* This approach seems only work for 2D

Future research direction
* 3D object-centric representations from a single image.



Thanks for listening!



