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BACKGROUND: Generative Models

What is generative models?

What are in generative model family?

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse
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BACKGROUND: Generative Models

What's the ideal generative models?

One step projector

Global projector

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse
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BACKGROUND: Generative Models

A novel generative model —— Idempotent Generative Network

« The first step towards a “global projector”

Target
distribution

Source rdistribution
(e.g., noise)



BACKGROUND: Idempotent

Applied sequentially multiple times without changing the result beyond the

initial application:

Examples: ‘le = |z Orthogonal Projection 42 — A

GEORGE: You're gonna "overdry” it.

JERRY: You, you can’t ”overdry.”

GEORGE: Why not?

JERRY: Same as you can’t ”overwet.” You see, once something is wet, it’s wet. Same thing with
dead: like once you die you're dead, right? Let’s say you drop dead and I shoot you: you’re not
gonna die again, you're already dead. You can’t "overdie,” you can’t "overdry.”

— “Seinfeld”, Season 1, Episode 1, NBC 1989
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METHOD: Overview

Generate samples from a target distribution 2. given input from a source
distribution P,

Basic idea:

Learning a model f satisfy:

flx) =z
f(f(2)) = f(2)

Target
distribution

Source distribution
(e.g., noise)



METHOD: Optimization Objectives

Reconstruction objective
Each sample 2z ~ P, is mapped to itself: f(z) =«
Define the drift measure of some instance y as: 0y (y) = D(y, fo(y))
S={y: fly) =y} ={y:0(y) =0}
Idempotent objective
Similarly, we hope f(z) € S 2~ P, ,thatis f(f(z)) = f(2)

Then the idempotence objective is formulated then as follows:

min 0o(fo(2)) = min D (fo(2), fo(fo(2)))
Does it work?



METHOD: Optimization Objectives

What about f(z) = 2z Vz7?

Makes on the estimated manifold, but not imply other instances not on that
What does Idempotent optimization do?
« MappingZto S

Expanding S
f(f(2) =f(2)
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METHOD: Optimization Objectives

Idempotent objective

Only optimize w.r.t. the first f(-) to discourage the incentive to expand

Lidem(2;0,0") = 06/ (fo(2)) = D (for (fo(2)), fo(2))
»Cidem(e; 9,> — ]Ez [Lz'dem<z; (97 H,H

Not just discourage expand, but tighten:

Litight(2;0,0") = =g (for (2)) = =D (fo(for (2)), for (2))

Maximize the distance between f(y) and y



METHOD: Optimization Objectives

Adversarial fashion

Ltight(z; 97 9,) — _Lidem (Z; 9,7 9)
f(f(2)) = f(2)

[(f(2) =f(2)
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METHOD: Optimization Objectives

Tightening loss metric

I—/ i VA
Ltight (Z) = tanh (a;—/i:z((z))) a'L'rec(z)

Final optimization objective
L (97 9,) = Lrec (9) +AiLidem (97 9,) +)\t£tight (07 9,)
= Ea.. [d0(2) + Aidor(fa(2) = Aedo(for(2))]
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METHOD: Training Strategy

Final optimization objective

95(f(2)) df ()
9f(f(2)) b
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METHOD: Theoretical Results

How to prove the method is efficient?

« The convergenced generated distribution is aligned with target distribution

Theorem 1. Under ideal conditions, IGN converges to the target distribution.
We define the generated distribution, represented by Py(y), as the PDF of y when y = fg(z) and

z ~ P,. We split the loss into two terms.
,C(H, 9/) — Erec(e) + )\iﬁtight(e; 9/) +)‘t£idem(0; 9/) (15)

N J/
~

Ert

We assume a large enough model capacity such that both terms obtain a global minimum:

0" = argmin L,4+(0;0™) = argmin L; e (0;07) (16)
0 0

Then, 30* : Py« = P, and for \y = 1, this is the only possible Pgy-.
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METHOD: Theoretical Results

We first find the global minimum of £,; given the current parameters 6™:

Lr4(6;0%) = E; [D(fo(),2)] — ME.[D(fo(fo-(2)), fo- (2))] (17)

- / 0(2)Pa(2)dz — A, / 5o(fo- (2))Po- (2)dz (18)

We now change variables. For the left integral, let y := x and for the right integral, let y := fy-(2).
L(0;07) = / 00 (y) P (y)dy — At / 09 (y) Po~ (y)dy (19)

= / 06(y) (Px(y) — At Po- (y))dy (20)
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METHOD: Theoretical Results

We denote M = sup,, ., D(y1,y2), where the supremum is taken over all possible pairs ¥, yo.

Note that M can be infinity. Since dy is non-negative, the global minimum for £,.;(6; 6*) is obtained
when:

0o (y) = M - Lip, (1)< Por ()} VY (21)
Next, we characterize the global minimum of £;;.,,, given the current parameters 6™:
Lidem(0,0%) =E. D (fo- (fo(2)), fo(2))] = E.[do-(fo(2))] (22)
Plugging in Eq. 21 and substituting 8* with 6 as we examine the minimum of the inner f:
Lidem(0;60%) = M -E. |[Lip, (y)<2iPo()}] (23)
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METHOD: Theoretical Results

To obtain 6%, according to our assumption in Eq. 16, we take arg min, of Eq. 23:

0" = M -argminE. [1(p, () <x, Py (w)}] (24)

The presence of parameters to be optimized in this formulation is in the notion of the distribution
Po(y). If Py« = P, and \; < 1, the loss value will be 0, which is its minimum. If A = 1,
0* : Py~ = P, 1s the only minimizer. This 1s because the total sum of the probability needs to be 1.
Any y for which Py(y) < P.(y) would necessarily imply that 3y such that Py(y) > P, (y), which
would increase the loss. []
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METHOD: Theoretical Results

In practice, we use \; < 1. While the theoretical derivation guarantees a single desired optimum
for \; = 1, the practical optimization of a finite capacity neural network suffers undesirable effects
such as instability. The fact that f is continuous makes the optimal theoretical 8* which produces a
discontinuous 0g- unobtainable in practice. This means that £;;,,; tends to push toward high values
of dg(y) also for y that is in the estimated manifold. Moreover, in general, it is easier to maximize
distances than minimize them, just by getting big gradient values.
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EXPERIMENTS

Network architecture: Autoencoder from DCGAN
Regular DCGAN Architecture

100<4 | e = Fsc |: FsC —¢ FSC Fsc conv conv o om | ful 1
S=" 1 m ﬁ 1 e
D o o -

i —

4 x4x1024 8 x8x512 16 X 16 X 256 32x32%x 128 64x64x3 64X64x3 32x32x128 16X 16 X 256 8x8x512 4x4x1024

{ &

Generator Network Discriminator Network

Flipped DCGAN Architecture, used in IGN for CelebA

@wnv conv conv &_@_Hﬂ@ FSC ﬁ FSC FSC FSC @

Discriminator Network Generator Network

Dataset: MNIST(28*28) , CelebA(64*64)



EXPERIMENTS

Generation from noise
FID=39 (DCGAN FID=34)
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EXPERIMENTS

Out-of-distribution projection

Generation from noisy image, grayscale and sketches

ALY LAY Y, 8 RIS
. v & A v ~
. JUIRS/ WS

’ . ’

=\ Y
| R t'{'»'f. |

fs(x) f(f(s(x)))
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EXPERIMENTS

Latent space manipulations
Glasses Direction
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EXPERIMENTS

Projection-based edit Projection-based compositing

X X f (/\; ) f (f (1\7 )) Z f (Z ) X Xmask f (Xmask)
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CONCLUSION

« Compared with GAN
» Self-adversarial
« Compared with Diffusion

» The trajectory between distributions is determined solely by the model’s learning

process but not set rule

Target
distribution

flx) =z
F(f(2)) =

|
~
VR

N
N—"

Source distribution
(e.g., noise)
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CONCLUSION

 Advantage

* A global projector, can apply to never seen data
* One step projector
« Allow more accurate finetune by multi-step map

 Limitation 10

20

 Mode collapse

100

 Blurriness e

10000

 Unsteadiness 100000

y

= NN N

\

B
3
-
4
F &
)
l
l

o0 Q) e

300000



Thanks for listening!



