Towards Language Models That Can See: Computer Vision Through the LENS of Natural Language

William Berrios[†] Gautam Mittal^{†§} Tristan Thrush^{†§}
Douwe Kiela^{†§} Amanpreet Singh[†]

[†]Contextual AI; [§]Stanford University

arXiv:2306.16410

帮我把图片处理成1920*1080分辨率

chicago.jpg

```
1 # Open the image file
----> 2 img = Image.open('/mnt/data/chicago.jpg')
4 # Resize the image
5 img_resized = img.resize((1920, 1080))

NameError: name 'Image' is not defined

看起来我忘记了导入必要的Python库。我需要首先导入Python的图像处理库PIL。让我修正这
```

Finished working Hide work ^

个错误并重新运行代码。

```
from PIL import Image

# Open the image file
img = Image.open('/mnt/data/chicago.jpg')

# Resize the image
img_resized = img.resize((1920, 1080))

img_resized
```


我已经将图片的分辨率改变为了1920x1080。接下来,我将保存这个图片,然后将文件链接提供给您。

Finished working

Show work 💙

臣妾做不到啊

chicago.jpg

事常抱歉,我当前的能力并不包括裁剪出特定形状(例如兔子形状需要使用图像识别和处理技术,以便能够识别并裁剪出特定形状。 形状的模板,我可以帮你按照这个模板裁剪图片。这需要模板图像 黑色,而你想要删除的部分是白色。你是否有这样的模板图像?

表 帮我把这张图片转换为梵高的《星月夜》的风格

chicago.jpg

我明白你的要求,你希望将这张图片进行风格转换,使其风格接近秃高的《星月夜》。然而,我很抱歉地告诉你,虽然有一些深度学习的技术,如神经风格迁移,可以实现这种风格转换,但在当前的环境中,我无法执行这样的任务。因为这需要训练神经网络模型,并且需要使用到GPU等资源,以及互联网访问权来下载预训练的模型。这些超出了我目前的能力。

这张图片的内容是什么

chicago.jpg

T 我无法直接查看您上传的图片,但我可以使用计算机视觉技术来解析图片的内容。然而,我必须指出,虽然人工智能在图像识别方面已经取得了很大的进步,但它仍然无法与人类的视觉识别能力相比,特别是在理解图片的具体内容和上下文方面。

但是,由于当前的环境限制,我无法访问互联网,因此无法使用像Google Vision或Amazon Rekognition这样的云端图像识别服务来识别图片内容。这些服务能提供详细的图片内容分析,包括对象检测、场景识别、面部识别和文本识别等。

Content

- Background
- Method
- Experiments

Content

- Background
- Method
- Experiments

Large Language Models (LLMs)

Large Language Models (LLMs)

- Large amount of text data
- Billions of parameters
- Extensive text related tasks
 - Text summary
 - Translation
 - Emotional analysis
- Zero-shot and few-shot

Employing LLMs on vision-related tasks?

Old-Style Pretraining

Maria Tsimpoukelli, Jacob Menick, Serkan Cabi, S. M. Ali Eslami, Oriol Vinyals, and Felix Hill. Multimodal few-shot learning with frozen language models. arXiv preprint arXiv:2106.13884, 2021.

Frozen

Frozen

Figure 3: Inference-Time interface for *Frozen*. The figure demonstrates how we can support (a) visual question answering, (b) outside-knowledge question answering and (c) few-shot image classification via in-context learning.

Maria Tsimpoukelli, Jacob Menick, Serkan Cabi, S. M. Ali Eslami, Oriol Vinyals, and Felix Hill. Multimodal few-shot learning with frozen language models. arXiv preprint arXiv:2106.13884, 2021.

Frozen

Maria Tsimpoukelli, Jacob Menick, Serkan Cabi, S. M. Ali Eslami, Oriol Vinyals, and Felix Hill. Multimodal few-shot learning with frozen language models. arXiv preprint arXiv:2106.13884, 2021.

Frozen

Context

This was invented by Zacharias Janssen.

This was invented by Henry Ford.

This was invented by

Model Completion

the Wright brothers.

Frozen vision encoder

& New layers

Flamingo 🦩

Flamingo 🦩

Flamingo 🦩

Lightweight transformer

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language_x0002_image pre-training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597, 2023.

BLIP

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language_x0002_image pre-training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597, 2023.

BLIP-2

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language_x0002_image pre-training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597, 2023.

Content

- Background
- Method
- Experiments

Motivation

Massive additional vision-and-language alignment or multimodal data, Long term training

Motivation

Massive additional vision-and-language alignment or multimodal data, Long term training

LENS: Without any need for additional vision-and-language alignment or multimodal data.

Method

Leverages a LLM as the reasoning module

Operates over independent vision modules

Framework

Content

- Background
- Method
- Experiments

- 1. Object recognition task
 - 9 benchmark datasets
 - zero-shot, 1-shot, and 3-shot
- 2. Vision and language reasoning
 - zero-shot benchmarks

Prompt Design

Examples:

Components	Prompt
Tag:	Top-1 CLIP Tag
Attributes:	Top-K Attributes
Question:	Task specific prompt
Short Answer:	{answer}

Table 8: Object recognition prompt used in LENS

Components	Prompt		
Captions:	Top-N captions		
Question:	e.g Who is doing "x" action?		
Short Answer:	{answer}		

Table 9: VQA prompt used in LENS

Object Recognition

	LENS				CLIP	
Datasets	L_{14} - FlanT 5_{XL}	L_{14} - FlanT 5_{XXL}	H_{14} - $FlanT5_{XL}$	H_{14} - Flan $T5_{XXL}$	$\mid L_{14}$	H_{14}
Pets [46]	90.1	92.0	92.6	92.4	87.8	90.1
DTD [8]	47.6	49.0	57.8	58.5	50.7	53.7
Aircraft [38]	31.1	30.1	38.5	38.5	29.5	38.0
Caltech101 [33]	71.3	71.9	75.4	75.5	70.4	75.6
Flowers 102 [41]	73.0	76.4	76.6	76.7	75.5	74.9
Food101 [4]	90.9	90.9	90.8	92.1	89.8	92.6
Cars [28]	75.9	76.3	92.9	93.6	75.9	93.4
Cifar10 [30]	95.0	94.9	95.7	95.5	95.0	95.6
ImageNet-1k [9]	69.6	69.2	73.0	73.1	70.7	75.6
Vision Avg.	71.6 (-0.1)	72.3 (+0.6)	77.0 (+0.4)	77.3 (+0.7)	71.7	76.6

Models	# Trainable Params	VQAv2 test-dev	OK-VQA test	Rendered - SST2 test	Hatef dev	ul Memes test-seen
Kosmos-1	1.6B	51.0	-	67.1	63.9	-
Flamingo _{3B}	1.4B	49.2	41.2	-	-	53.7
Flamingo _{9B}	1.8B	51.8	44.7	-	-	57.0
Flamingo _{80B}	10.2B	56.3	50.6	-	-	46.4
BLIP-2 _{ViT-L} FlanT5 _{XL}	103M	62.3	39.4	-	-	-
BLIP-2 _{ViT-g} FlanT5 _{XXL}	108M	65.0	45.9	-	-	-
LENS Flan-T5 _{XL}	0	57.9	32.8	83.3	58.0	59.3
LENS Flan-T5 _{XXL}	0	62.6	43.3	82.0	59.4	62.5

Q: How many white objects in this picture?

A: 9

Q: What color is the chair in front of the wall on the left side of the stacked chairs?

A: blue

Q: What is the largest white object on the left side of the picture?

A: printer

Prompt Template	Acc. (Avg.)
Objects	76.6
Attributes	74.7
Objects + Attributes	77.0

Prompt Template	VQA-ACC
Question	37.2
Intensive Captioning (1) + Question	52.5
Intensive Captioning (5) + Question	56.6
Intensive Captioning (20) + Question	59.1
Intensive Captioning (50) + Question	60.4

Thanks For Listening