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Overview

Volume rendering
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Background: NeRF
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“The primary advantage of this hybrid representation is efficiency.”

Background: Triplane Representation for NeRF
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Large Reconstruction Model: Task Description and Overview

• Task: Single-image to 3D (Triplane representation à Mesh)

• Overview: The first large-scale (500M params) 3D reconstruction model

• Trained on one million 3D shapes and video data across diverse categories

• Category-agnostic

• Training objective: simple L2 reconstruction loss

• Performance: Can reconstruct high-fidelity 3D shapes from a wide range of images 

captured in the real world in five seconds
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Large Reconstruction Model: Pipeline

DINO Encoder



6

Large Reconstruction Model: Pipeline

Triplane Decoder
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Large Reconstruction Model: Pipeline

Camera modulation
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Large Reconstruction Model: Pipeline

Camera modulation (AdaLN)

Decoder (overall)
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Large Reconstruction Model: Pipeline

Training objective
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Large Reconstruction Model: Experiments

Datasets

• Objaverse (~730k object meshes)

• MVImgNet (~220k object-centric videos)

Pre-processing: remove background

GPU: 128 A100, 3 days
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Large Reconstruction Model: Experiments
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Large Reconstruction Model: Experiments
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Denoising Multi-view Diffusion: Task Description

• Task: Single-image/Text to 3D (Triplane representation à Mesh)

• Overview: Single-stage framework that leverages multi-view 2D image diffusion 

model to achieve 3D generation;

• Trained on one million 3D shapes and video data across diverse categories

• Training objective: simple L2 reconstruction loss

• Probabilistic approach, i.e., multiple reasonable 3D outputs given the same input

• Performance: High-quality text-to-3D generation and single-image reconstruction 

through direct model inference within 30 seconds on an A100 GPU.
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Denoising Multi-view Diffusion: Task Description

Input (posed multi-view images):

Diffusion process (forward):

Denoising process:

St

E (LRM)

E: 3D reconstruction module
St: 3D representations
R: Rendering module

R (Triplane NeRF)
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Denoising Multi-view Diffusion: Method

St

E (LRM)

R (Triplane NeRF)

• Time conditioning: AdaLN block
• Camera conditioning: concatenate Plucker Coordinates with input pixels 
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Denoising Multi-view Diffusion: Method

Conditional generation
• Single-image condition
• Keep the condition image noise-free 
• Align the Triplane coordinates with the condition view’s coordinates
• Normalize input camera view as LRM does

• Text condition
• Use the CLIP text encoder to obtain text embeddings.
• Inject them into the denoiser using cross-attention.
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Denoising Multi-view Diffusion: Method

Conditional generation
• Single-image condition
• Keep the condition image noise-free 
• Align the Triplane coordinates with the condition view’s coordinates
• Normalize input camera view as LRM does

• Text condition
• Use the CLIP text encoder to obtain text embeddings.
• Inject them into the denoiser using cross-attention.

• Training objective:
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Denoising Multi-view Diffusion : Experiments

Datasets

• Objaverse (~730k object meshes)

• MVImgNet (~220k object-centric videos)

• Cap3D (~660k image & caption pairs)

GPU: 128 A100, 7 days
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Denoising Multi-view Diffusion : Experiments
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Denoising Multi-view Diffusion : Experiments
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