STRUCT Group Paper Reading

Augmentation Matters: A Simple-yet-Effective Approach to Semi-Supervised Semantic Segmentation

Zhen Zhao, Lihe Yang, Sifan Long, Jimin Pi, Luping Zhou*, Jingdong Wang* University of Sydney, Baidu Inc., Nanjing University, Jilin University

CVPR 2023 Highlight

PRESENTER: JIAHANG ZHANG

2023/06/04

- 1 Authors
- 2 Background
- 3 Method
- 4 Experiments
- 5 Discussion

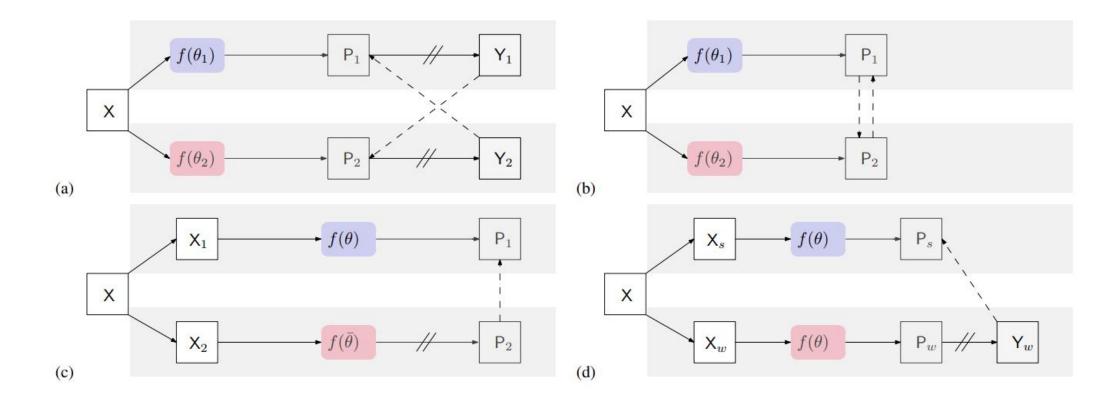
- 1 Authors
- 2 Background
- 3 Method
- 4 Experiments
- 5 Discussion

- 1 Authors
- 2 Background
- 3 Method
- 4 Experiments
- 5 Discussion

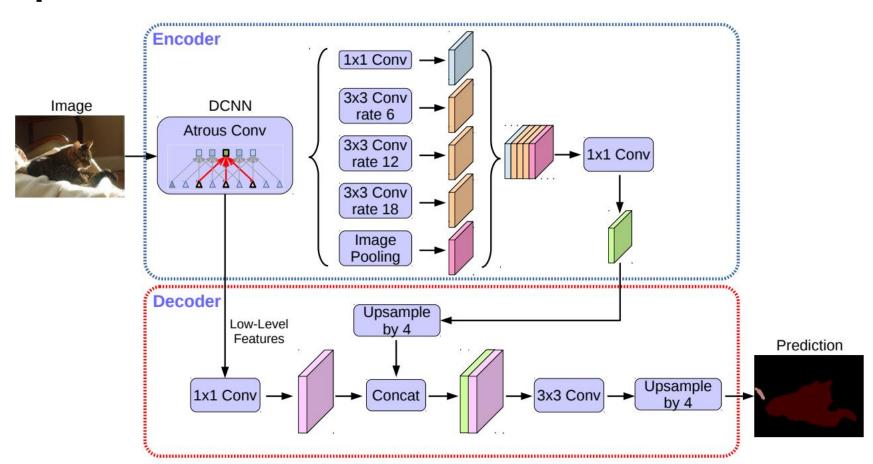
- Semi-Supervised Learning
 - labeled data for supervised learning
 - unlabeled data for unsupervised or pseudo supervised learning

- Semi-Supervised Learning
 - Multiple Branches
 - Unsupervised Contrast
 - Uncertainty / Attention
 - Co-training
 - Re-balancing
 - Correcting Network

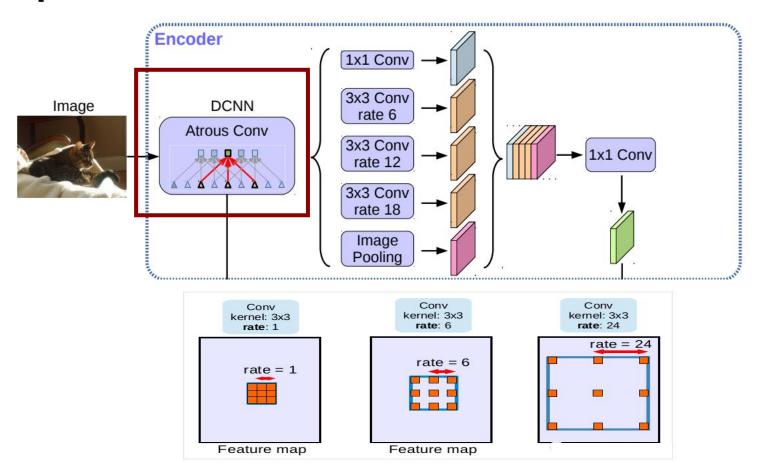
Semi-Supervised Learning



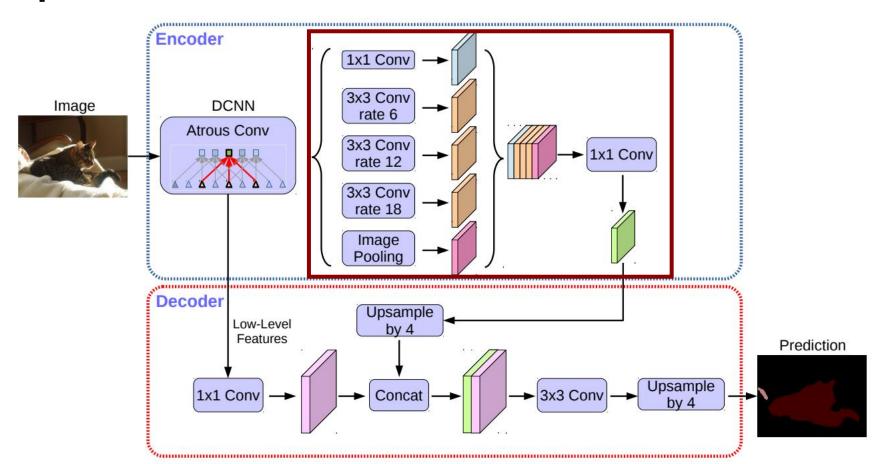
■ DeepLab V3+



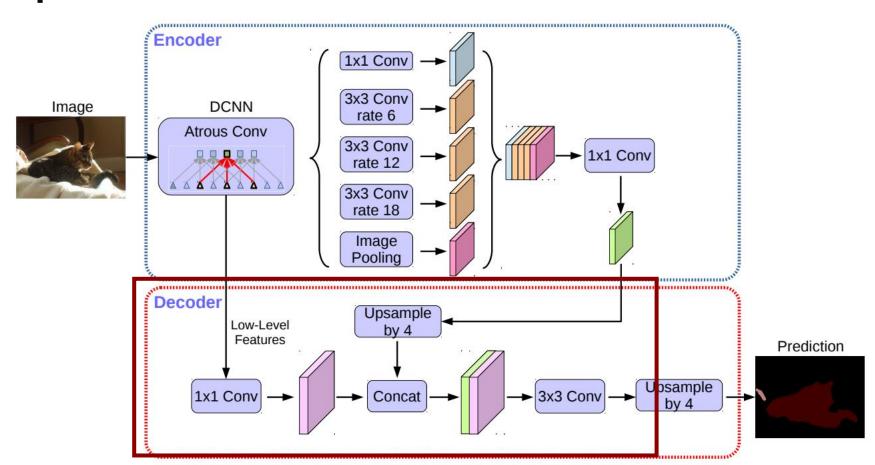
■ DeepLab V3+



DeepLab V3+



■ DeepLab V3+



- 1 Authors
- 2 Background
- 3 Method
- 4 Experiments
- 5 Discussion

- Motivation:
 - Propose a simple and clean approach for SSS.
 - Techniques
 - Only Augmentations!
 - Multiple branches
 - Unsupervised Contrast
 - Uncertainty/Attention
 - Re-balancing
 - Correcting Network

- **■** Problem Definition:
 - lacksquare Labeled data (x_i,y_i)
 - lacksquare Unlabeled data u_i

Optimization objective:

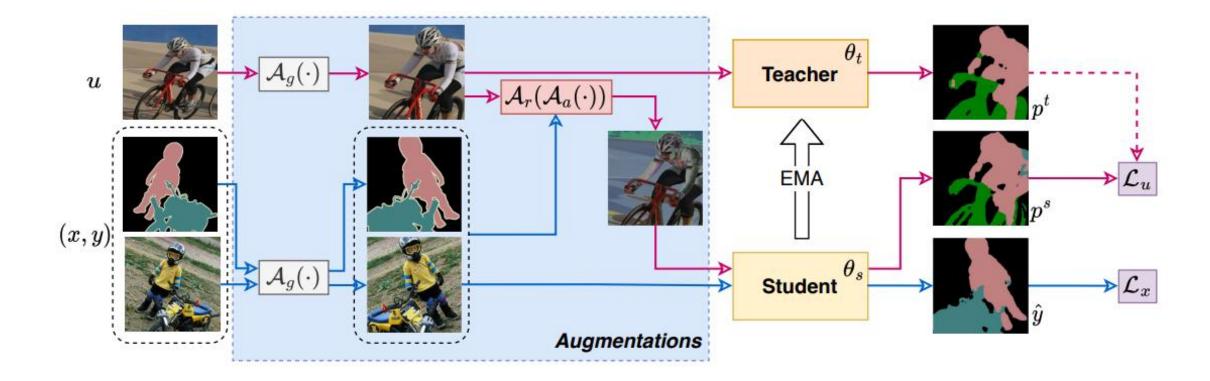
$$\mathcal{L} = \mathcal{L}_x + \lambda_u \mathcal{L}_u$$

- Problem Definition:
 - Labeled data (x_i, y_i)
 - lacksquare Unlabeled data u_i

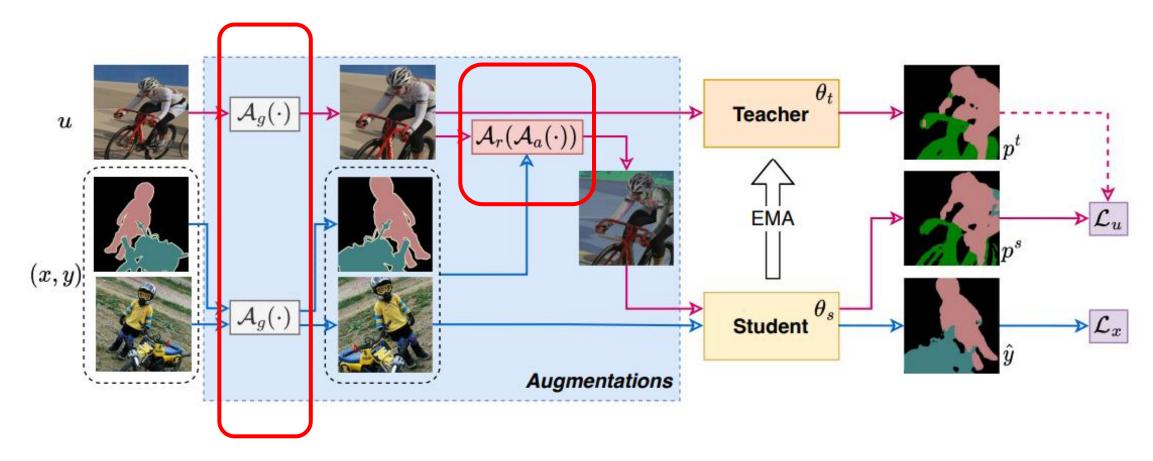
Optimization objective:

$$\mathcal{L} = \underbrace{\mathcal{L}_x}_{\text{L}} + \lambda_u \underbrace{\mathcal{L}_u}_{\text{Loss}}$$
Cross-Entropy
Loss Unsupervised
Consistency Loss

Overview



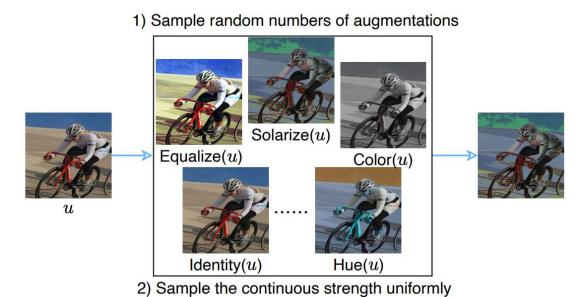
Overview



- "Weak" and "Strong" Augmentations
 - Weak aug. $\mathcal{A}_g(\cdot)$
 - Teacher branch
 - Strong aug. $A_r(A_a(\cdot))$.
 - Student branch

Weak Geometrical Augmentation - Apply all					
Random Scale Randomly resizes the image by [0.5, 2.0]. Random Flip Horizontally flips the image with a probability of 0.5. Random Crop Randomly crops an region from the image.					
Random 1	Intensity-based Augmentation - Apply k randomly				
Identity Autocontrast Equalize Gaussian blur Contrast Sharpness	Returns the original image. Maximizes (normalize) the image contrast. Equalize the image histogram. Blurs the image with a Gaussian kernel. Adjusts the contrast of the image by [0.05, 0.95]. Adjusts the sharpness of the image by [0.05, 0.95].				
Color Brightness Hue Posterize Solarize	Enhances the color balance of the image by [0.05, 0.95] Adjusts the brightness of the image by [0.05, 0.95] Jitters the hue of the image by [0.0, 0.5] Reduces each pixel to [4,8] bits. Inverts image pixels above a threshold from [1,256).				

- Strong Augmentations (1/2)
 - Random Intensity-based Augmentations
 - Random distorting degree
 - Random augmentation number



- Strong Augmentations (2/2)
 - Adaptive Label-aided CutMix
 - Confidence Estimation

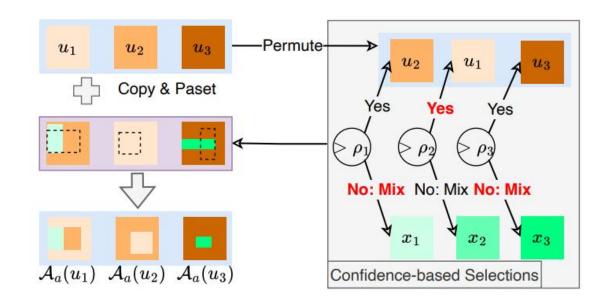
$$\rho_{i} = \frac{1}{H \times W} \sum_{j=1}^{H \times W} \max(p_{i}^{t}(j)) (1 - \frac{-\sum p_{i}^{t}(j) \log p_{i}^{t}(j)}{\log N})$$

Set it as the probability for CutMix

- Strong Augmentations (2/2)
 - Adaptive Label-aided CutMix
 - CutMix based on confidence

$$u'_n \leftarrow M_n \odot u_n + (\mathbf{1} - M_n) \odot x_n,$$

$$\mathcal{A}_a(u_m) \leftarrow M_m \odot u_m + (\mathbf{1} - M_m) \odot u_n'$$



- 1 Authors
- 2 Background
- 3 Method
- 4 Experiments
- 5 Discussion

■ Main Results (1/2)

Method	Encoder	1/16 (92)	1/8 (183)	1/4 (366)	1/2 (732)	Full (1464)
Supervised	R50	44.03	52.26	61.65	66.72	72.94
PseudoSeg [58]	R50	54.89	61.88	64.85	70.42	71.00
PC ² Seg [56]	R50	56.90	64.63	67.62	70.90	72.26
AugSeg	R50	64.22	72.17	76.17	77.40	78.82
Supervised	R101	43.92	59.10	65.88	70.87	74.97
CutMix-Seg [17]	R101	52.16	63.47	69.46	73.73	76.54
PseudoSeg [58]	R101	57.60	65.50	69.14	72.41	73.23
PC ² Seg [56]	R101	57.00	66.28	69.78	73.05	74.15
CPS [7]	R101	64.07	67.42	71.71	75.88	<u>-</u> 4
PS-MT [36]	R101	65.80	69.58	76.57	78.42	80.01
ST++ [50]	R101	65.20	71.00	74.60	77.30	79.10
$U^{2}PL$ [47]	R101	67.98	69.15	73.66	76.16	79.49
AugSeg	R101	71.09	75.45	78.80	80.33	81.36

Table 3. Compared with the state-of-the-art methods on classic Pascal VOC 2012 val set under different partition protocols. '1/n' means that '1/n' data is used as labeled dataset, and the remaining images are used as unlabeled dataset.

■ Main Results (2 / 2)

Method	ResNet-50			ResNet-101		
Wethod	1/16 (662)	1/8 (1323)	1/4 (2646)	1/16 (662)	1/8 (1323)	1/4 (2646)
Supervised	63.72	68.49	72.46	67.76	72.13	75.04
MT [46]	66.77	70.78	73.22	70.59	73.20	76.62
CCT [44]	65.22	70.87	73.43	67.94	73.00	76.17
GCT [29]	64.05	70.47	73.45	69.77	73.30	75.25
CPS [7]	68.21	73.20	74.24	72.18	75.83	77.55
CPS w/ CutMix [7]	71.98	73.67	74.90	74.48	76.44	77.68
ST++ [50]	72.60	74.40	75.40	74.50	76.30	76.60
PS-MT [36]	72.83	75.70	76.43	75.50	78.20	78.72
AugSeg	74.66	75.99	77.16	77.01	77.31	78.82
Supervised [‡]	67.66	71.91	74.53	70.63	75.02	76.47
$U^2PL^{\ddagger}*[47]$	74.74	77.44	77.51	77.21	79.01	79.30
$\mathbf{AugSeg}^{\ddagger}$	77.28	78.27	78.24	79.29	81.46	80.50

Table 4. Comparison with the state-of-the-art on the PASCAL VOCAug val set under different partition protocols. The VOCAug trainset consists of 10,582 labeled samples in total. \ddagger means the same split as U²PL, which prioritizes selecting high-quality labels from classic VOCs. Other methods use the same split as CPS. * presents our reproduced results for U²PL [47] using ResNet-50.

Ablation Study

AugSeg			mIoU			
MT	$MT A_r A_a$		VOC (366)	Citys (744)		
			61.65 (supervised)	74.14 (supervised)		
\			69.06 (7.41†)	75.96 (1.821)		
\	\		72.41 (10.76†)	77.29 (3.151)		
√		\	74.33 (12.68†)	77.44 (3.30†)		
\	\checkmark	√	76.17 (14.52†)	78.76 (4.62†)		

Table 6. Ablation studies on our AugSeg. "MT" means the standard mean-teacher semi-supervised framework. A_r and A_a represent the two main augmentation strategies, the random intensity-based and adaptive label-aided augmentations, respectively. Improvements over the supervised baseline are highlighted in blue.

Ablation Study

λ_u	0.0	0.5	1.0	1.5	2.0
VOC (366)	61.65	75.21	76.17	75.95	77.05
Citys (744)	74.14	77.02	78.76	78.99	78.68

Table 7. Ablations on the loss weight λ_u , set as 1.0 by default.

k	0	1	2	3	4
VOC (366)	74.38	75.50	76.10	76.17	76.32
Citys (186)	71.26	72.10	73.42	73.73	73.03
Citys (744)	77.44	78.34	78.11	78.76	78.48

Table 8. Ablations on the maximum number of selected intensity-based augmentations, using R50 as the encoder. k=3 by default.

Qualitative Results

Original Image GT Supervised Mean Teacher Ours

- 1 Authors
- 2 Background
- 3 Method
- 4 Experiments
- 5 Discussion

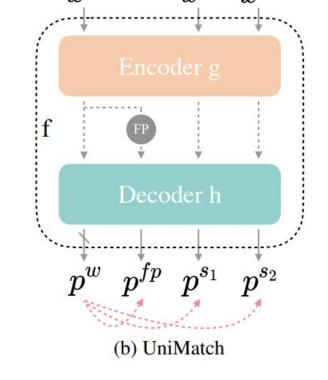
Discussion

- Review the proposed AugSeg framework
 - Simple two-branch model architecture
 - Weak-Strong augmentations
 - SOTA performance only by augmentations

Discussion

- Comparison to the concurrent work UniMatch, CVPR 23
 - Weak-Strong augmentations
 - More augmentations

Revisiting Weak-to-Strong Consistency in Semi-Supervised Semantic Segmentation



Lihe Yang¹ Lei Qi² Litong Feng³ Wayne Zhang³ Yinghuan Shi^{1*}

¹Nanjing University ²Southeast University ³SenseTime Research

Thanks!