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Background

* Pre-Trained Image Processing Transformer
* CVPR 2021
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Background

* Transweather: Transformer-based restoration of images
degraded by adverse weather conditions

* CVPR 2022
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Background

* All-in-one Image Restoration for Unknown Degradations Using

Adaptive Discriminative Filters for Specific Degradations

* CVPR 2023
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Unified Image Restoration and Enhancement 10

B Generative Diffusion Prior (GDP)

B A unified framework for multiple restoration and enhancement tasks.

B Use a pretrained unconditional image synthesis diffusion model as prior.

Denoising
Process

(a) Estimating the
Degradation Model

Guiding the
Restoration

Supervision

[7] Ben Fei, et al. Generative Diffusion Prior for Unified Image Restoration and Enhancement, CVPR, 2023




Unified Image Restoration and Enhancement 1"

B Generative Diffusion Prior (GDP)
B A unified framework for multiple restoration and enhancement tasks.
B Use a pretrained unconditional image synthesis diffusion model as prior.
B Different degradation models learned during the sampling process.
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[7] Ben Fei, et al. Generative Diffusion Prior for Unified Image Restoration and Enhancement, CVPR, 2023




Unified Image Restoration and Enhancement

12

B Generative Diffusion Prior (GDP)

Low-light Image Enhancement

Long Medium

HDR Image Recovery

[7] Ben Fei, et al. Generative Diffusion Prior for Unified Image Restoration and Enhancement, CVPR, 2023
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Strength

« Take advantage of a frozen LLM for low-level vision
* No multi-modality data needed
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« Multi-modal LLM (MLLM )

 those that require an additional text-to-image module

 those that do not
« Structure like VQGAN, every modal into tokens
* Training on massive multi-modal data
» Unified as next-token prediction

 Failing to provide a clear understanding of the capability of a LLM in processing
visual features

* Only discuss the former



Inspiration

 Current MLLMs are BLIND to Low-level Features

* Vision module in MLLMs often tend to capture high-level

semantics but fail to maintain low-level details
GT SEED Emu N Emu-2 MAE

Figure 1: Reconstruction results of the vision modules in different MLLMs. Emu2 provides highly
semantic consistent images but fails to maintain low-level details, while MAE can reconstruct images
with precise low-level details.

16



Framework
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Figure 2: Network structure of our design. In the training phase, the visual tokens and the task
tokens learns to prompt the LLM to generate next visual/text tokens. In the inference phase, the LLM

generates visual tokens and text tokens in an auto-regressive manner. The visual tokens are then
decoded into images.
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Vision module choice

1. The training objective of the vision module should be
reconstruction

* the encoded feature can be decoded back to pixel space

2. Trained in an unsupervised manner to avoid any multi-modal
training
* |f the encoder transformed image into text-like features, it becomes unclear

whether the LLMis leveraging its powerful text processing abilities or it
iInherently has the capability to process other modalities (visual).
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Vision module choice

Masked Autoencoder (MAE)
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Vision module choice

Masked Autoencoder (MAE)
* Encoder frozen, finetune decoder
* Originally calculate the reconstruction loss solely on masked tokens

Table 1: Reconstruction FID (rFID), preci-
sion, recall and PSNR on the validation set
of ImageNet. MAE-LI1 indicates to use L1
loss for fine-tuning MAE’s decoder. MAE* is
the version tuned by a combination of L1 loss
and LPIPS Loss. Best results are bolded.

|

Model rFID| prec(%)t recall(%)T PSNRT

MAE 84.22 13.35 45.78 19.15
MAE-L1 996 88.46 97.57 29.21
VQGAN 1.49 94.90 99.67 22.61
MAE* 124 99.94 99.97 28.96
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Framework

* An auto-regressive
manner ; S s v ~

* Trainable task token ——-.

* Two linear e
adaptation modules

57
Input: LQ Image

Figure 2: Network structure of our design. In the training phase, the visual tokens and the task
tokens learns to prompt the LLM to generate next visual/text tokens. In the inference phase, the LLM
generates visual tokens and text tokens in an auto-regressive manner. The visual tokens are then
decoded into images.
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Framework

* An auto-regressive manner
 Trainable task token

Human: <Img><LQ-image></Img> <task> Assistant:

<Img><HQ-image></Img>
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Experiment

» LLaMAZ2-7B instruct as base LLM for all experiments
 MAE-large for vision module
* LLAVAS95K for degradation generation

* Main tasks: denoising, deblurring , pepper noise removal,
deraining, mask removal

 MAE-r as removing LLM

23



Experiment

Table 2: Results of LM4LV on various low-level vision tasks. The top five tasks are image restoration
tasks, the bottom two tasks do not require restoration, but involve large-scale spatial operations.

Tasks Degraded MAE-r LM4LV

L PSNR 1 SSIM T PSNR7T SSIM 1T PSNR 1 SSIM T APSNR/SSIM
Denoising 23.11dB  0.49 19.96dB 0.65 26.77dB 0.80 +6.81dB/+0.15
Deblurring 30.88dB  0.83 26.14dB 0.78 26.23dB 0.79 +0.09dB/+0.01
Deraining 20.52dB  0.84 19.96dB 0.74 24.62dB 0.77 +4.66dB/+0.03

Pepper Removal 19.22dB  0.51 23.01dB 0.58 25.20dB 0.75 +2.19dB/+0.17
Mask Removal 20.54dB  0.83 20.00dB 0.73 25.83dB 0.80 +5.83dB/+0.07

Rotation inf’ 1.00 29.52dB 0.89 27.18dB 0.83 -2.34dB/-0.06
Flipping inf 1.00  29.52dB 0.89 27.28dB 0.84  -2.24dB/-0.05
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Experiment
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Experiment

ViT-LLM Auto-regressive

« Auto Regression matters.

* ViT-LLM generation: directly output
curated image tokens in a single
forward process

Figure 5: ViT-LLM generation fails for im-
age denoising even when the noise level 1s
low (2nd row), producing low-quality and
blurred images.
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Experiment

* |s the Linear Layer Doing the Task?

* Leaving only the linear adaptation
module.

Figure 6: Using a single linear layer for de-
noising yields bad results.
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Experiment

* |s the Linear Layer Doing the Task?

* Leaving only the linear adaptation
module.

 Two linear layers tend to perform a
scaled identity mapping even

though they are not forced to do so.
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Figure 11: The multiplication matrix tends
to center 1t’s weight on the diagonal. Yellow
represents a large value, and blue represents a

small value.
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Experiment

* Does Text Pre-training Play an Important Role?
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Figure 7: Using randomly initialized LLM gives messy outputs.
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Experiment

* LLM vs Expert Models

Table 3: Comparisons of different expert models
and our methods. Using LLLM gain superior per-
formance in image rotation, and surpass MLP in
image denoising. Best results are in bold.

Denoising Rotation
PSNRt SSIM 17 PSNR1T SSIM 1
MLP 25.87dB 0.76 13.29dB 0.32

Transformer 27.42dB (.81 10.52dB 0.23
Ours* 26.77dB 0.80 27.18dB 0.83




Experiment

 Failure case

* fails to align the visual tokens correctly
GT Noisy LM4L
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Limitation

(Gaussian Noise
S

Masking Rain Pepper Noise Blurring
P e

 Lack high-frequency
details
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* Could be improved by
adding skip-connection or
multi-modal data
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Conclusion

* Does a frozen LLM has the ability to accept, process, and output low-level
features?

» By designing a framework from bottom to top, give a positive answer, showing
LLMs’ non-trivial performance on various low-level tasks.
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Thanks for your listening!




