CVPR 2024 Best Paper Generative Image Dynamics

Zhengqi Li Richard Tucker Noah Snavely Aleksander Holynski Google Research

Presenter: Wenshuo Gao 2024.09.03

- Author
- Background
- Method
- Experiments

- Author
- Background
- Method
- Experiments

Background: Animating an Image

Task: Generate a video based on an input image

Method 1: Directly generate raw RGB pixel volume:

- Computationally expensive
- Inconsistency

Input Image

Result from Runway

Background: Animating an Image

Task: Generate a video based on an input image

Method 2: Moving the image content around according to motion:

- Since most pixel information are **shared** across the video
- Consistency
- Utilize optical flow

Input Image

Result from Generative Image Dynamics

Optical Flow

- Description of displacement field
- $F(\mathbf{p}): \mathbb{R}^2 \to \mathbb{R}^2$ is to describe the **relative position** of a pixel from frame 1 in position \mathbf{p} to frame 2:

$$I_1(\mathbf{p}) = I_2(\mathbf{p} + F(\mathbf{p}))$$

Optical Flow

Estimation of Optical Flow

 Lucas-Kanade / Horn-Schunck method: Assume similar flows in nearby pixels Solve the equation for all p:

 $I_1(\mathbf{p}) = I_2(\mathbf{p} + F(\mathbf{p}))$

(Details are shown in *Experiments* section)

Machine learning method:
 Train models from video datasets

Recover Video from Optical Flow $I_1(\mathbf{p}) = I_2(\mathbf{p} + F(\mathbf{p}))$

Handling conflicts Solutions:

(a) Average splatting(b) Linear splatting(c) Softmax splatting

Recover Video from Optical Flow

Handling conflicts

Solutions:

(a) Average splatting:

- Directly calculate the average of colors
- Blend overlapping regions
- (b) Linear splatting(c) Softmax splatting

Recover Video from Optical Flow

Handling conflicts

Solutions:

(a) Average splatting

(b) Linear splatting:

- Calculate the **weighted** average
- High weight for **foreground** parts
- Low weight for **background** parts
- Require depth map

(c) Softmax splatting

Recover Video from Optical Flow

Handling conflicts

Solutions:

(a) Average splatting

(b) Linear splatting

(c) Softmax splatting:

- Calculate the **weighted** average
- High weight for **moving** parts
- Low weight for still parts

• The weight function is trained in a network or computed from motion

Recover Video from Optical Flow

Feature level softmax splatting

Render smoother results

Softmax Splatting for Video Frame Interpolation. CVPR, 2020.

Generating Video using Optical Flow

Using neural networks to predict optical flow from an image

Generating Video using Optical Flow

Using U-Net to predict optical flow

Animating Landscape: Self-Supervised Learning of Decoupled Motion and Appearance for Single-Image Video Synthesis. arXiv preprint, 2019.

Generating Video using Optical Flow

Feature level splatting

Animating Pictures with Eulerian Motion Fields. CVPR, 2021.

Generating Video using Optical Flow

Limitation: Individual $t \in \{1, \ldots, T\}$ across video frames

- Computationally expensive
- Temporal inconsistency

Solution:

(1) Autoregressive

Using frame t - 3, t - 2, t - 1 to predict frame t

(2) Timestep embedding

Using embedded t as input of model

Generating Video using Optical Flow

Limitation: Individual $t \in \{1, \ldots, T\}$ across video frames

- Computationally expensive
- Temporal inconsistency

Solution:

(3) Spectral volume

- The **frequency form** of motion
- The **Discrete Fourier Transform** of optical flow
- Capable of separating high-/low-frequency information
- Motion composed of summation of cosine curves \rightarrow consistency

Background: Discrete Fourier Transform

Discrete Fourier Transform (DFT)

Decomposes functions into summation of **cosine curves** Transforms **time-domain** data into **frequency-domain** information

Background: Spectral Volume

Spectral Volume

For a *T*-frame video, optical flow: $\mathcal{F}(\mathbf{p}) = \{F_t(\mathbf{p}) | t = 1, ..., T\}$ DFT transforms optical flow into spectral volume with *K* frequencies

$$egin{aligned} \mathcal{S}(\mathbf{p}) &= \{S_{f_k}(\mathbf{p}) | k = 0, \dots, K-1\} \ ext{where } \mathcal{S}(\mathbf{p}) &= DFT(\mathcal{F}(\mathbf{p})) \end{aligned}$$

Note that if $K \ll T$, the motion is stored in **less parameters**

- Author
- Background
- Method
- Experiments

How to Generate Video using Spectral Volume

Using neural networks to predict spectral volume from an image

Input during training: Noisy latent features encoded from GT spectral volume

Input during inferencing: Gaussian noise

Denoising: Downsampled initial frame as condition

Output: Denoised features decoded to produce 4K-channel spectral volume

How to choose frequencies?

Natural oscillations are composed mainly of low-frequency components

Keep the lowest 16 frequencies (K = 16) is sufficient

Directly predict 4K-channel spectral volume: computational expensive / inconsistency Solution: frequency embedding, **as condition** (cross attention)

During denoising, data should be ranged in [-1,1]

Solution:

(1) Directly scaling according to resolution:

• Coefficients at higher frequencies close to 0

(2) Adaptive normalization:

- Normalizes by using statistics (like the 95th percentile) from training data
- Coefficients distribute more evenly

Recover Video from Spectral Volume

Calculate optical flow:

$$\mathcal{F}(\mathbf{p}) = DFT^{-1}(\mathcal{S}(\mathbf{p}))$$

Recover video from optical flow using softmax splatting:

The weight function is calculated by: $W(\mathbf{p}) = \frac{1}{T} \sum_{t} ||F_t(\mathbf{p})||_2$

(a) Average-splat (b) Learned W (c) W from motion

30

Application

Input still picture

Seamless looping video

Interactive dynamics

Application: Seamless Looping Video

Application: Seamless Looping Video

Application: Interactive Dynamics

$$||\mathbf{q}_{f_j}(0)|| = ||\frac{\mathbf{f}(0)}{||\mathbf{f}(0)||_2} \cdot S_{f_j}||_2 \qquad \phi_{\text{drag}}(\mathbf{q}_{f_j}(0)) = -\phi(\frac{\mathbf{f}(0)}{||\mathbf{f}(0)||_2} \cdot S_{f_j})$$

See supplementary material p.1

- Author
- Background
- Method
- Experiments

Experiments: Data

Collected 3000+ natural scenes exhibiting oscillatory motions Extracted GT motions from a classical flow method (DL-based flow method: too smooth)

$$egin{aligned} &I(x,y,t) = I(x+\Delta x,y+\Delta y,t+\Delta t)\ &I(x+\Delta x,y+\Delta y,t+\Delta t) pprox I(x,y,t) + rac{\partial I}{\partial x}\Delta x + rac{\partial I}{\partial y}\Delta y + rac{\partial I}{\partial t}\Delta t\ &rac{\partial I}{\partial x}\Delta x + rac{\partial I}{\partial y}\Delta y + rac{\partial I}{\partial t}\Delta t = 0\ &I_x u + I_y v + I_t = 0\ &E(u,v) = \iint \left[(I_x u + I_y v + I_t)^2 + lpha^2 \left(|
abla u|^2 + |
abla v|^2
ight)
ight] dx\,dy \end{aligned}$$

Metrics

- Frechet Inception Distance (FID)
- Kernel Inception Distance (KID)

distance between the distributions of generated frames and GT frames

- Frechet Video Distance (FVD, FVD₃₂)
- **Dynamic Texture Frechet Video Distance** (DTFVD, DTFVD₃₂) reflect synthesis quality for the natural oscillation motions

	Image Synthesis		Video Synthesis			
Method	FID	KID	FVD	FVD ₃₂	DTFVD	DTFVD ₃₂
TATS	65.8	1.67	265.6	419.6	22.6	40.7
Stochastic I2V	68.3	3.12	253.5	320.9	16.7	41.7
MCVD	63.4	2.97	208.6	270.4	19.5	53.9
LFDM	47.6	1.70	187.5	254.3	13.0	45.6
DMVFN	37.9	1.09	206.5	316.3	11.2	54.5
Endo et al.	10.4	0.19	166.0	231.6	5.35	65.1
Holynski et al.	11.2	0.20	179.0	253.7	7.23	46.8
Ours	4.03	0.08	47.1	62.9	2.53	6.75

Ablation

Retaining of frequencies

	Image Synthesis		Video Synthesis				
Method	FID	KID	FVD	FVD ₃₂	DTFVD	DTFVD ₃₂	
Repeat I_0	-	-	237.5	316.7	5.30	45.6	
$\overline{K} = 4$	3.92	0.07	60.3	78.4	3.12	8.59	
K = 8	3.95	0.07	52.1	68.7	2.71	7.37	
K = 24	4.09	0.08	48.2	65.1	2.50	6.94	
w/o adaptive norm.	4.53	0.09	62.7	80.1	3.16	8.19	
Independent pred.	4.00	0.08	52.5	71.3	2.70	7.40	
Volume pred.	4.74	0.09	53.7	71.1	2.83	7.79	
Baseline splat	4.25	0.09	49.5	66.8	2.83	7.27	
Full ($K = 16$)	4.03	0.08	47.1	62.9	2.53	6.75	

Ablation

Scaling according to resolution

	Image Synthesis		Video Synthesis				
Method	FID	KID	FVD	FVD ₃₂	DTFVD	DTFVD ₃₂	
Repeat I_0	-	-	237.5	316.7	5.30	45.6	
K = 4	3.92	0.07	60.3	78.4	3.12	8.59	
K = 8	3.95	0.07	52.1	68.7	2.71	7.37	
K = 24	4.09	0.08	48.2	65.1	2.50	6.94	
w/o adaptive norm.	4.53	0.09	62.7	80.1	3.16	8.19	
Independent pred.	4.00	0.08	52.5	71.3	2.70	7.40	
Volume pred.	4.74	0.09	53.7	71.1	2.83	7.79	
Baseline splat	4.25	0.09	49.5	66.8	2.83	7.27	
Full ($K = 16$)	4.03	0.08	47.1	62.9	2.53	6.75	

Ablation

No frequency embedding

	Image Synthesis		Video Synthesis				
Method	FID	KID	FVD	FVD ₃₂	DTFVD	DTFVD ₃₂	
Repeat I ₀	-	-	237.5	316.7	5.30	45.6	
K = 4	3.92	0.07	60.3	78.4	3.12	8.59	
K = 8	3.95	0.07	52.1	68.7	2.71	7.37	
K = 24	4.09	0.08	48.2	65.1	2.50	6.94	
w/o adaptive norm.	4.53	0.09	62.7	80.1	3.16	8.19	
Independent pred.	4.00	0.08	52.5	71.3	2.70	7.40	
Volume pred.	4.74	0.09	53.7	71.1	2.83	7.79	
Baseline splat	4.25	0.09	49.5	66.8	2.83	7.27	
Full ($K = 16$)	4.03	0.08	47.1	62.9	2.53	6.75	

Ablation

No latent

	Image	e Synthesis	Video Synthesis				
Method	FID	KID	FVD	FVD ₃₂	DTFVD	DTFVD ₃₂	
Repeat I_0	-	-	237.5	316.7	5.30	45.6	
K = 4	3.92	0.07	60.3	78.4	3.12	8.59	
K = 8	3.95	0.07	52.1	68.7	2.71	7.37	
K = 24	4.09	0.08	48.2	65.1	2.50	6.94	
w/o adaptive norm.	4.53	0.09	62.7	80.1	3.16	8.19	
Independent pred.	4.00	0.08	52.5	71.3	2.70	7.40	
Volume pred.	4.74	0.09	53.7	71.1	2.83	7.79	
Baseline splat	4.25	0.09	49.5	66.8	2.83	7.27	
Full ($K = 16$)	4.03	0.08	47.1	62.9	2.53	6.75	

Ablation

Learnable weights in softmax splatting

	Image Synthesis		Video Synthesis				
Method	FID	KID	FVD	FVD ₃₂	DTFVD	DTFVD ₃₂	
Repeat I_0	-	-	237.5	316.7	5.30	45.6	
K = 4	3.92	0.07	60.3	78.4	3.12	8.59	
K = 8	3.95	0.07	52.1	68.7	2.71	7.37	
K = 24	4.09	0.08	48.2	65.1	2.50	6.94	
w/o adaptive norm.	4.53	0.09	62.7	80.1	3.16	8.19	
Independent pred.	4.00	0.08	52.5	71.3	2.70	7.40	
Volume pred.	4.74	0.09	53.7	71.1	2.83	7.79	
Baseline splat	4.25	0.09	49.5	66.8	2.83	7.27	
Full ($K = 16$)	4.03	0.08	47.1	62.9	2.53	6.75	

Conclusion

- 1. A new approach for modeling natural oscillation dynamics from a single still picture
- 2. Produces photo-realistic animations from a single picture and significantly outperforms prior baselines
- 3. Demonstrates potential to enable several downstream applications such as creating seamlessly looping or interactive image dynamics

Limitation:

The model is not capable of generating:

- (a) non-oscillating motions
- (b) high-frequency oscillations (only low-frequencies were kept)
- (c) contents not covered by dataset

1. Creative combination of existing works

Require broad foundations and insights

- 2. Fancy results
- 3. Interesting downstream applications

Interactive image dynamics

Thanks for listening!