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Background: Animating an Image
Task: Generate a video based on an input image
Method 1: Directly generate raw RGB pixel volume: 
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• Computationally expensive
• Inconsistency

Result from Runway

Input Image



Background: Animating an Image
Task: Generate a video based on an input image
Method 2: Moving the image content around according to motion:

• Since most pixel information are shared across the video
• Consistency
• Utilize optical flow
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Result from Generative Image Dynamics

Input Image



Background: Optical Flow
Optical Flow
• Description of displacement field
•                         is to describe the relative position of a pixel from frame    

in position    to frame   :
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Background: Optical Flow
Optical Flow
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Background: Optical Flow
Estimation of Optical Flow
• Lucas-Kanade / Horn-Schunck method:

Assume similar flows in nearby pixels
Solve the equation for all    :

(Details are shown in Experiments section)

• Machine learning method:
Train models from video datasets
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Background: Optical Flow

Recover Video from Optical Flow
Handling conflicts
Solutions:
(a) Average splatting
(b) Linear splatting
(c) Softmax splatting
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Background: Optical Flow

Recover Video from Optical Flow
Handling conflicts
Solutions:
(a) Average splatting: 
• Directly calculate the average of colors
• Blend overlapping regions
(b) Linear splatting
(c) Softmax splatting
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Background: Optical Flow

Recover Video from Optical Flow
Handling conflicts
Solutions:
(a) Average splatting
(b) Linear splatting:
• Calculate the weighted average
• High weight for foreground parts
• Low weight for background parts
• Require depth map
(c) Softmax splatting
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Background: Optical Flow

Recover Video from Optical Flow
Handling conflicts
Solutions:
(a) Average splatting
(b) Linear splatting
(c) Softmax splatting:
• Calculate the weighted average
• High weight for moving parts
• Low weight for still parts
• The weight function is trained in a network or computed from motion
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Background: Optical Flow

Recover Video from Optical Flow
Feature level softmax splatting

Render smoother results

13Softmax Splatting for Video Frame Interpolation. CVPR, 2020.



Background: Optical Flow

Generating Video using Optical Flow
Using neural networks to predict optical flow from an image
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Background: Optical Flow

Generating Video using Optical Flow
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Using U-Net to predict optical flow

Animating Landscape: Self-Supervised Learning of Decoupled Motion and Appearance for Single-Image Video Synthesis.  arXiv preprint, 2019.



Background: Optical Flow

Generating Video using Optical Flow
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Feature level splatting

Animating Pictures with Eulerian Motion Fields. CVPR, 2021.



Background: Optical Flow

Generating Video using Optical Flow
Limitation: Individual                       across video frames

• Computationally expensive
• Temporal inconsistency

Solution: 
(1) Autoregressive

Using frame                            to predict frame 

(2) Timestep embedding
Using embedded    as input of model
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Background: Optical Flow

Generating Video using Optical Flow
Limitation: Individual                       across video frames

• Computationally expensive
• Temporal inconsistency

Solution: 
(3) Spectral volume

• The frequency form of motion
• The Discrete Fourier Transform of optical flow
• Capable of separating high-/low-frequency information
• Motion composed of summation of cosine curves → consistency
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Background: Discrete Fourier Transform

Discrete Fourier Transform (DFT)
Decomposes functions into summation of cosine curves
Transforms time-domain data into frequency-domain information
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Background: Spectral Volume

Spectral Volume
For a    -frame video, optical flow:
DFT transforms optical flow into spectral volume with     frequencies

                                where

Note that if                 , the motion is stored in less parameters
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Method

How to Generate Video using Spectral Volume
Using neural networks to predict spectral volume from an image
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Method
Predict Spectral Volume by Latent Diffusion Model (LDM)

Input during training: Noisy latent features encoded from GT spectral volume
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Method
Predict Spectral Volume by Latent Diffusion Model (LDM)

Input during inferencing: Gaussian noise
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Method
Predict Spectral Volume by Latent Diffusion Model (LDM)

Denoising: Downsampled initial frame as condition
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Method
Predict Spectral Volume by Latent Diffusion Model (LDM)

Output: Denoised features decoded to produce 4K-channel spectral volume
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Method
Predict Spectral Volume by Latent Diffusion Model (LDM)

How to choose frequencies? 

Natural oscillations are composed mainly of low-frequency components

Keep the lowest 16 frequencies (              ) is sufficient
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Method
Predict Spectral Volume by Latent Diffusion Model (LDM)

Directly predict 4K-channel spectral volume: computational expensive / inconsistency

Solution: frequency embedding, as condition (cross attention)
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Method
Predict Spectral Volume by Latent Diffusion Model (LDM)

During denoising, data should be ranged in

Solution: 

(1) Directly scaling according to resolution:
• Coefficients at higher frequencies close to 0

(2) Adaptive normalization:
• Normalizes by using statistics (like the 95th percentile) from training data

• Coefficients distribute more evenly
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Method
Recover Video from Spectral Volume

Calculate optical flow:

Recover video from optical flow using softmax splatting:
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The weight function is calculated by:



Application
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Application: Seamless Looping Video
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Application: Seamless Looping Video
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Application: Interactive Dynamics

34See supplementary material p.1
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Experiments: Data

36

Collected 3000+ natural scenes exhibiting oscillatory motions
Extracted GT motions from a classical flow method
(DL-based flow method: too smooth)



Experiments: Quantitative
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Metrics
•  Frechet Inception Distance (FID)
•  Kernel Inception Distance (KID)

distance between the distributions of generated frames and GT frames

• Frechet Video Distance (FVD, FVD32)
• Dynamic Texture Frechet Video Distance (DTFVD, DTFVD32)

reflect synthesis quality for the natural oscillation motions



Experiments: Quantitative
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Ablation
Retaining of frequencies



Experiments: Quantitative
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Ablation
Scaling according to resolution



Experiments: Quantitative
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Ablation
No frequency embedding



Experiments: Quantitative
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Ablation
No latent



Experiments: Quantitative
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Ablation
Learnable weights in softmax splatting



Experiments: Qualitative
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Conclusion
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1. A new approach for modeling natural oscillation dynamics from a 
single still picture

2. Produces photo-realistic animations from a single picture and 
significantly outperforms prior baselines

3. Demonstrates potential to enable several downstream applications 
such as creating seamlessly looping or interactive image dynamics



Conclusion
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Limitation: 
The model is not capable of generating:

(a) non-oscillating motions
(b) high-frequency oscillations (only low-frequencies were kept)
(c) contents not covered by dataset



Discussion
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1. Creative combination of existing works 
Require broad foundations and insights

2. Fancy results

3. Interesting downstream applications
Interactive image dynamics



Thanks for listening!


