DiffIR: Efficient Diffusion Model for Image Restoration

ICCV 2023 Poster

Bin Xia¹, Yulun Zhang², Shiyin Wang³, Yitong Wang³, Xinglong Wu³, Yapeng Tian⁴, Wenming Yang¹, and Luc Van Gool²

¹Tsinghua University, ²ETH, ³ByteDance Inc., ⁴University of Texas at Dallas

马逸扬 2024/03/10

Content

- Authors
- Background
- Method
- Experiments

Content

- Authors
- Background
- Method
- Experiments

DDPMs & Score-based models: two perspectives.

Denoising diffusion probabilistic models (DDPMs), NIPS 20':

Forward diffusion process (fixed)

Data

Reverse denoising process (generative)

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1 - \bar{\alpha}_t)\mathbf{I})) \tag{1}$$

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t \mathbf{I})$$
 (2)

$$\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) := \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1 - \bar{\alpha}_t}\mathbf{x}_0 + \frac{\sqrt{1 - \beta_t}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t}\mathbf{x}_t \qquad \qquad \tilde{\beta}_t := \frac{1 - \bar{\alpha}_{t-1}}{1 - \bar{\alpha}_t}\beta_t \tag{3}$$

1

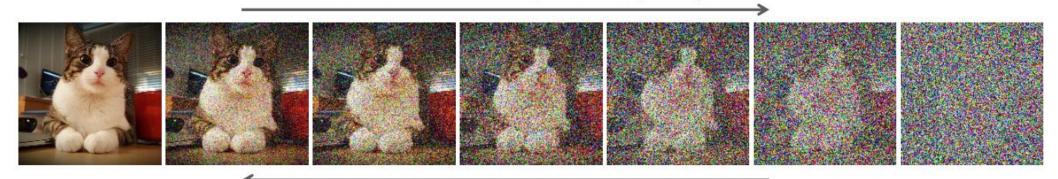
Noise

Data

DDPMs & Score-based models: two perspectives.

Denoising diffusion probabilistic models (DDPMs), NIPS 20':

Forward diffusion process (fixed)



Reverse denoising process (generative)

$$L_{\text{simple}} = \mathbb{E}_{\mathbf{x}_0 \sim q(\mathbf{x}_0), \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), t \sim \mathcal{U}(1, T)} \left[||\epsilon - \epsilon_{\theta}(\sqrt{\bar{\alpha}_t} |\mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} |\epsilon, t)||^2 \right]$$
(4)

Noise

DDPMs & Score-based models: two perspectives.

Generative Modeling by Estimating Gradients of the Data Distribution (NCSN), ICLR 19':

Score matching:

$$\frac{1}{2}\mathbb{E}_{p_{\text{data}}}[\|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})\|_{2}^{2}]$$
 (5)

Why?

Considering a parameterized distribution:

$$p(x;\theta) = \frac{1}{Z(\theta)}q(x;\theta)$$
 (6)

$$Z(heta) = \int\limits_{x \in \mathbb{R}^n} q(x; heta) dx$$
 (7)

The MLE target is:

$$heta_{mle} = rg \max_{ heta} \sum_{t=1}^{T} \log p(x_t; heta)$$
 (8)

DDPMs & Score-based models: two perspectives.

Generative Modeling by Estimating Gradients of the Data Distribution, ICLR 19':

$$heta_{mle} = rg \max_{ heta} \sum_{t=1}^{T} \log p(x_t; heta)$$
 (8)

However, such a target is difficult to learn due to $Z(\theta)$. We notice that:

$$\nabla_x \log p(x; \theta) = \nabla_x [\log q(x; \theta) - \log Z(\theta)]$$
 (9)

Thus, the training target becomes:

$$\frac{1}{2}\mathbb{E}_{p_{\text{data}}}[\|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p_{\text{data}}(\mathbf{x})\|_{2}^{2}]$$
 (5)

The sampling process can be:

$$\tilde{\mathbf{x}}_t = \tilde{\mathbf{x}}_{t-1} + \frac{\epsilon}{2} \nabla_{\mathbf{x}} \log p(\tilde{\mathbf{x}}_{t-1}) + \sqrt{\epsilon} \, \mathbf{z}_t \tag{10}$$

How to compute $\nabla_{\mathbf{x}} \log p_{\mathrm{data}}(\mathbf{x}) \|_2^2$?

DDPMs & Score-based models: two perspectives.

Generative Modeling by Estimating Gradients of the Data Distribution, ICLR 19':

How to compute $\nabla_{\mathbf{x}} \log p_{\mathrm{data}}(\mathbf{x}) \|_2^2$?

We perturb the sample by:

$$q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}} \mid \mathbf{x}, \sigma^{2}I) \tag{11}$$

And we approximate the perturbed distribution:

$$q_{\sigma}(\tilde{\mathbf{x}}) \triangleq \int q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) p_{\text{data}}(\mathbf{x}) d\mathbf{x}$$
 (12)

Through:

$$\frac{1}{2} \mathbb{E}_{q_{\sigma}(\tilde{\mathbf{x}}|\mathbf{x})p_{\text{data}}(\mathbf{x})} [\|\mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x})\|_{2}^{2}]$$
(13)

DDPMs & Score-based models: two perspectives.

Generative Modeling by Estimating Gradients of the Data Distribution, ICLR 19':

After the training the $q_{\sigma}(\tilde{\mathbf{x}})$ on a set of different σ , we sample by:

- Sample $\mathbf{x_0}$ from $q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}} \mid \mathbf{x}, \sigma^2 I)$ with a large σ_0
- Repeat:
 - Start from \mathbf{x}_{t-1} within $q_{\sigma_{t-1}}$, repeat (10), until get \mathbf{x}_t from q_{σ_t}
- Until σ_T is 0, where $\tilde{\mathbf{x}}$ is equal to \mathbf{x} .

What's the loss? Recall that $q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) = \mathcal{N}(\tilde{\mathbf{x}} \mid \mathbf{x}, \sigma^2 I)$, we have:

$$\nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}} \mid \mathbf{x}) = -(\tilde{\mathbf{x}} - \mathbf{x})/\sigma^{2}$$
(11)

Thus.

$$\ell(\boldsymbol{\theta}; \sigma) \triangleq \frac{1}{2} \mathbb{E}_{p_{\text{data}}(\mathbf{x})} \mathbb{E}_{\tilde{\mathbf{x}} \sim \mathcal{N}(\mathbf{x}, \sigma^{2}I)} \left[\left\| \mathbf{s}_{\boldsymbol{\theta}}(\tilde{\mathbf{x}}, \sigma) + \frac{\tilde{\mathbf{x}} - \mathbf{x}}{\sigma^{2}} \right\|_{2}^{2} \right]$$
(12)

Two perspectives are both **vital**.

DDPM is more simple and intuitive.

NCSN is more fundamental and easy to extend:

Classifier guidance:

$$\nabla_{\mathbf{x}} \log p_t(\mathbf{x}(t) \mid \mathbf{y}) = \nabla_{\mathbf{x}} \log p_t(\mathbf{x}(t)) + \nabla_{\mathbf{x}} \log p(\mathbf{y} \mid \mathbf{x}(t)) \tag{13}$$

Classifier-free guidance:

$$\nabla_{\mathbf{z}_{\lambda}} \log p^{i}(\mathbf{c}|\mathbf{z}_{\lambda}) = -\frac{1}{\sigma_{\lambda}} [\boldsymbol{\epsilon}^{*}(\mathbf{z}_{\lambda}, \mathbf{c}) - \boldsymbol{\epsilon}^{*}(\mathbf{z}_{\lambda})]$$
(14)

(and my previous diffusion-based compression paper)

are both derived from NCSN.

Content

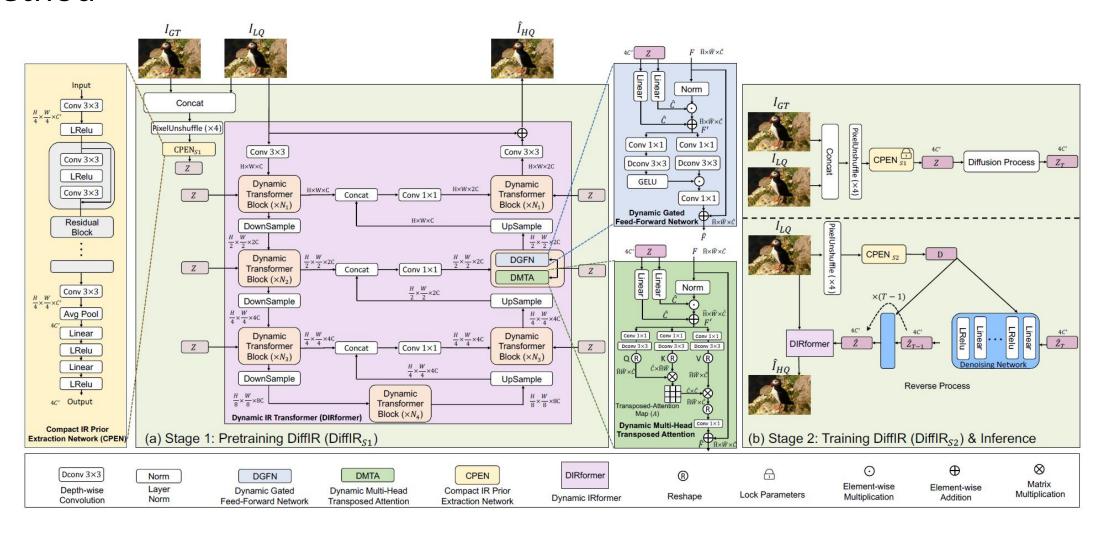
- Authors
- Background
- Method
- Experiments

Employ diffusion models in image super-resolution.

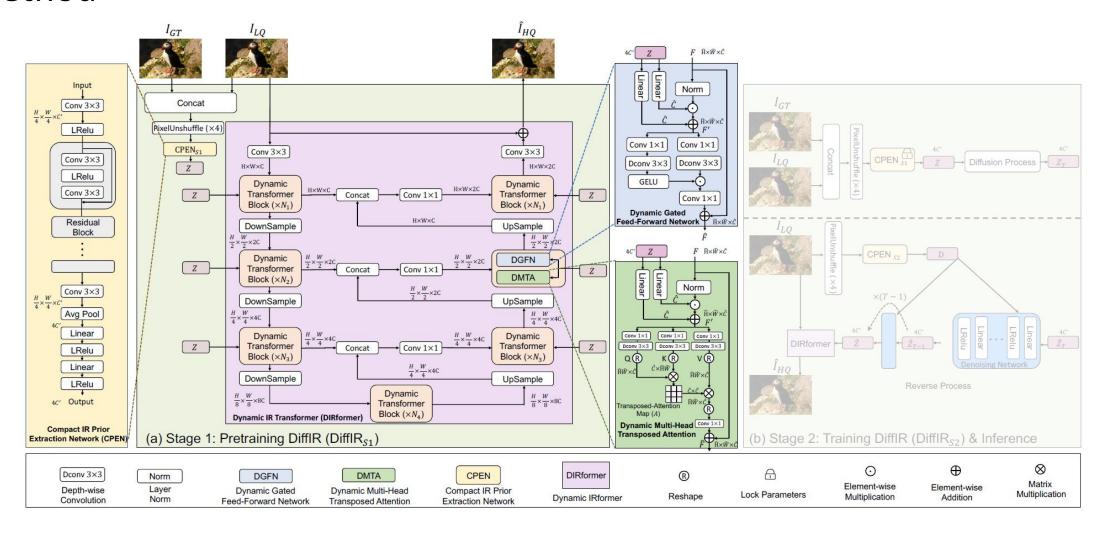
Challenges of generating SR images directly via diffusion models:

- Training the models
- Sampling from the models

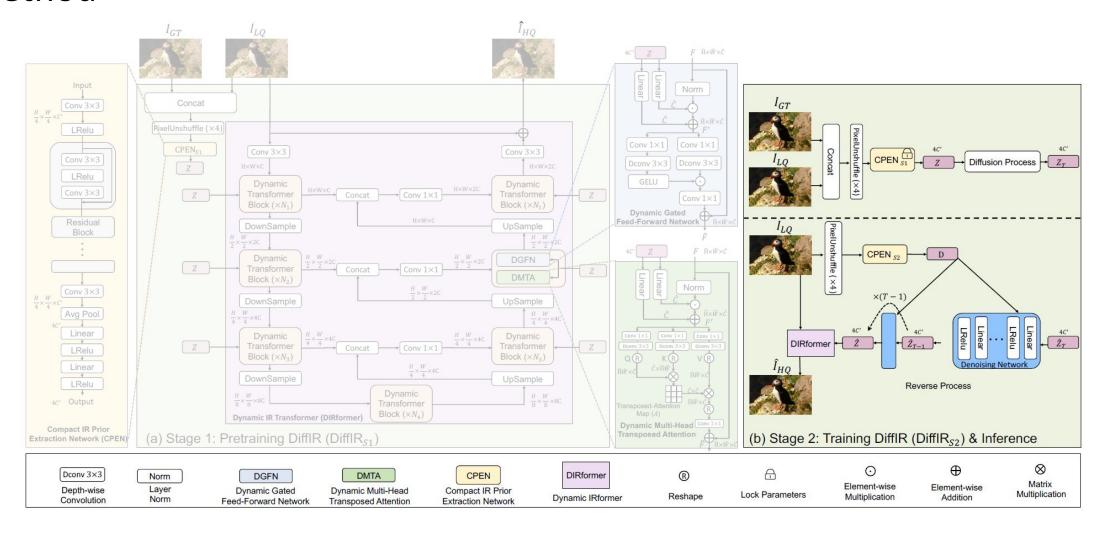
Approach: only employ diffusion models as a guidance to create details.



Two stages.



Stage1: Structural reconstruction module.



Stage2: Diffusion-based guidance module

Content

- Authors
- Background
- Method
- Experiments

The framework can be employed in different low-level vision tasks.

Image inpainting:

	#Params (M)	Places [88] (512×512)				CelebA-HQ [27] (256×256)			
Method		Narrow Masks		Wide Masks		Narrow Masks		Wide Masks	
		FID↓	LPIPS ↓	FID↓	LPIPS ↓	FID↓	LPIPS ↓	FID↓	LPIPS ↓
EdgeConnect [46]	22	1.3421	0.1106	8.4866	0.1594	6.9566	0.0922	7.8346	0.1149
ICT [61]	150		1-	-	-	8.4977	0.0982	9.8794	0.1196
LaMa [57]	27	0.6340	0.0898	2.2494	0.1339	5.3889	0.0806	5.7023	0.0951
LDM [50]	215		<u>-</u>	2.1500	0.1440	<u>-</u> :	=	-	
RePaint [40]	607	-	-	_	-	4.7395	0.0890	5.4881	0.1094
$DiffIR_{S2}$ (Ours)	26	0.4913	0.0758	1.9788	0.1306	4.5967	0.0769	5.1440	0.0918

HQ

ICT [61]

LaMa [57]

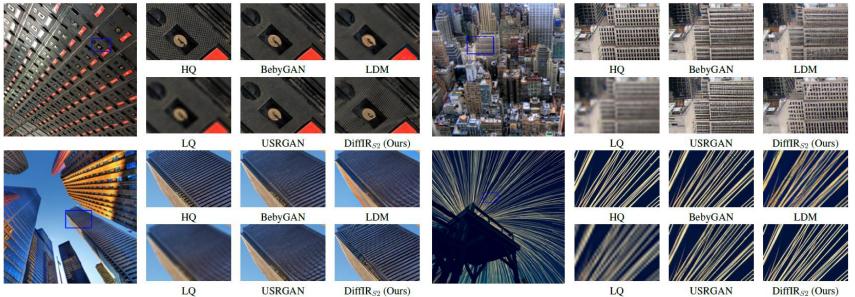
RePaint [40]

 $DiffIR_{S2}$ (Ours)

The framework can be employed in different low-level vision tasks.

Image super-resolution:

	Set14 [77]		Urban100 [25]		Manga109 [43]		General100 [16]		DIV2K100 [1]	
Method	PSNR ↑	LPIPS ↓	PSNR ↑	LPIPS ↓	PSNR ↑	LPIPS ↓	PSNR ↑	LPIPS ↓	PSNR ↑	LPIPS ↓
SFTGAN [64]	26.74	0.1313	24.34	0.1343	28.17	0.0716	29.16	0.0947	28.09	0.1331
SRGAN [34]	26.84	0.1327	24.41	0.1439	28.11	0.0707	29.33	0.0964	28.17	0.1257
ESRGAN [65]	26.59	0.1241	24.37	0.1229	28.41	0.0649	29.43	0.0879	28.18	0.1154
USRGAN [80]	27.41	0.1347	24.89	0.1330	28.75	0.0630	30.00	0.0937	28.79	0.1325
SPSR [42]	26.86	0.1207	24.80	0.1184	28.56	0.0672	29.42	0.0862	28.18	0.1099
BebyGAN [37]	27.09	0.1157	25.23	0.1096	29.19	0.0529	29.95	0.0778	28.62	0.1022
LDM [50]	25.62	0.2034	23.36	0.1816	25.87	0.1321	27.17	0.1655	26.66	0.1939
SRdiff [35]	27.14	0.1450	25.12	0.1379	28.67	0.0665	29.83	0.1009	28.58	0.1293
$DiffIR_{S2}$ (Ours)	27.73	0.1117	26.05	0.1007	30.32	0.0463	30.58	0.0717	29.13	0.0871
	HHAURAHAL	NA VIII			1 4475 HIII	E COMMITTEE				
									1	Column time time to the column time time to the column time time time time time time time time



The framework can be employed in different low-level vision tasks.

Image de-motion-blur:

Method	GoPre PSNR↑	o [45] SSIM↑	HIDI PSNR ↑	[53] SSIM↑	
Xu et al. [70]	21.00	0.741	-	=	
DeblurGAN [32]	28.70	0.858	24.51	0.871	
Nah et al. [45]	29.08	0.914	25.73	0.874	
Zhang <i>et al</i> . [79]	29.19	0.931	_	-	
DeblurGAN-v2 [33]	29.55	0.934	26.61	0.875	
SRN [58]	30.26	0.934	28.36	0.915	
Gao et al. [20]	30.90	0.935	29.11	0.913	
DBGAN [83]	31.10	0.942	28.94	0.915	
MT-RNN [47]	31.15	0.945	29.15	0.918	
DMPHN [78]	31.20	0.940	29.09	0.924	
Suin et al. [56]	31.85	0.948	29.98	0.930	
MIMO-Unet+[9]	32.45	0.957	29.99	0.930	
IPT [7]	32.52	13-	_	-	
MPRNet [75]	32.66	0.959	30.96	0.939	
Restormer [74]	32.92	0.961	31.22	0.942	
$\operatorname{DiffIR}_{S2}\left(\operatorname{Ours}\right)$	33.20	0.963	31.55	0.947	

The core ablation: how does the diffusion module affect the performances?

8	Mult-Adds (G)	GT	DM	Training S	Schemes	Inserting	CelebA-HQ	
Method				Traditional DM Optimization	Joint Optimization	Noise		
DiffIR_{S1}	47.97	/	×	×	×	×	4.8045	
$DiffIR_{S2}$ -V1	51.63	X	X	X	Х	X	5.6782	
$DiffIR_{S2}$ -V2	51.63	X	√	✓	X	X	5.9766	
$DiffIR_{S2}$ -V3 (Ours)	51.63	X	✓	×	\checkmark	X	5.1440	
$DiffIR_{S2}$ -V4	51.63	X	√	×	✓	✓	5.1937	

Diffusion-based methods can be less rigorous but well-performed.

The idea of the paper can be inspiring.

Thanks for watching.

马逸扬 2024/03/10