

3D Gaussian Splatting for Real-Time Radiance Field Rendering

SIGGRAPH 2023 Best Paper Award

Presenter: Shaofan Sun 2024.7.8

-
- Authorship
• Background
• Method
• Experiments
• Conclusion
-
-
-

Background: SfM & MVS

- Structure-from-Motion (SfM)
	- sparse reconstruction
	- estimate a sparse point cloud during camera calibration

- Multi-View Stereo (MVS)
	- dense reconstruction
	- estimate pixel-level information after matching images

Background: Neural Radiance Field (NeRF)

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, Ben Mildenhall, et al., ECCV 2020 < 4 >

Background: EWA Point Splatting

• Points: elliptical Gaussians

• Pixel value: normalized sum

$$
\mathbb{I}_{\mathbf{x}} = \frac{\sum_{k=0}^{N-1} \rho_k(\mathbf{x}) \mathbf{w}_k}{\sum_{k=0}^{N-1} \rho_k(\mathbf{x})}
$$

 \mathbf{p}_k

Method: Overview

- Create 3D Gaussians from sparse point cloud produced by SfM
- Create the radiance field representation via a sequence of optimization of 3D Gaussian parameters
- Allow α -blending of anisotropic splats with a tile-based rasterizer

• Model the geometry as a set of 3D Gaussians

$$
G(x) = e^{-\frac{1}{2}(x)^T \Sigma^{-1}(x)}
$$

• Project 3D Gaussians to 2D for rendering

$$
\Sigma' = JW\Sigma W^T J^T
$$

- \bullet W: transformation from object coordinates to camera coordinates
- \bullet /: Jacobian of the affine approximation of the projective transformation

- Gaussian parameters to optimize
	- Positions p (mean)
	- Opacity α for α -blending of anisotropic splats
	- Covariance matrix Σ
	- Color c represented by Spherical Harmonics (SH) coefficients
- Loss function
	- Compare the resulting image to the training views
	- $\mathcal{L} = (1 \lambda)\mathcal{L}_1 + \lambda\mathcal{L}_{\text{D-SSIM}}$

- Optimize the covariance matrix Σ , but:
	- Σ has physical meaning only when it is positive semi-definite
	- Gradient descent for all parameters can create invalid matrices

- Decompose $\Sigma: \Sigma = RSS^T R^T$ $T R^T$ T and T
	- R : rotation matrix represented by a quaternion q
	- $S:$ scaling matrix represented by a 3D vector s
	- Independently optimize both the factors

- Control the number and density (this "density" is not the σ in NeRF)
	- Focus on "under-reconstruction" and "over-reconstruction" regions
	- Densify and remove transparent Gaussians

• Set α close to zero periodically

• Remove "large" Gaussians

- For under-reconstruction regions
	- Create a copy of the same size
	- Move in the direction of the positional gradient

- For over-reconstruction regions
	- split into two smaller Gaussians
	- Initialize position with original Gaussian as PDF Next Split

Method: Tile-based Rasterizer

- Pre-sort primitives instead of sorting per pixel
	- Split the screen into 16×16 tiles
	- Keep Gaussians with a 99% confidence interval intersecting the view frustum
	- Reject Gaussians at extreme positions
	- Instantiate each Gaussian according to the number of tiles they overlap
	- Assign each instance a key that combines view space depth and tile ID
	- sort Gaussians with fast GPU Radix sort

Method: Tile-based Rasterizer

- α -blending forward process:
	- Produce a list of sorted Gaussian instances for each tile
	- Accumulate color and α values front-to-back for each pixel
	- Stop when all pixels reach a target saturation of α
- Backward process:
	- Traverse the lists back-to-front
	- Each point stores the final accumulated opacity
	- Divide by each point's α to obtain the coefficients for gradients

Method: Detailed Implementation

- Use SGD for optimization
- Add custom CUDA kernels for some operations
- Sigmoid activation function for α
- Exponential activation function for the scale of the covariance
- "warm up" from lower resolution
- Optimize SH coefficients starting from zero-order component

• Real-world Scenes

• Real-world Scenes

Experiments: Results

• Real-world Scenes

Experiments: Results

• Synthetic Bounded Scenes

PSNR Score

Experiments: Ablations

• Initialization from SfM

Experiments: Ablations

• Densification

• Split: better for background reconstruction Mosplit-5k

• Clone: better for thin structures

• Unlimited depth complexity of splats with gradients

limit 10 Gaussians **full version**

$< 22 >$

Experiments: Ablations

• Anisotropic Covariance

• PSNR Scores

• More results: https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/

- Contribution
	- Real-time, high-quality radiance field rendering
- Limitations
	- Artifacts
	- Memory consumption
- Future work
	- Culling approach, antialiasing and regularization
	- Adapt compression techniques for point clouds
	- Perform mesh reconstructions

Thanks for listening!