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Two stage pre-training

BLIP2 Representation Learning Objectives Subject Prompt Embedding ;l 2
s, 00 @EE®----- . _
X | L
Multimodal Encoder [ Feed Forward ] :
ﬁ Image ﬁ Image ! | Text — ) U-Net
Encoder Encoder Multimodal ! Encoder
| Encoder : —
Cross Al - l T T T | Text Prompt Emb.T Subject Prompt Emb.
|
e RN o ¢ Attontion “train® | (B000)(@ D+D E)
, :
= t | Queries Subject ——~~ - ‘T' “““ '
T IO E O “A cat wearing Text “A frain ot Hie Stalion,
sunglasses.” the train is 5
Input Image Queries Input Text Input Subject Image Text Prompt Output Subject Image



B Background

BLIP2 Representation Learning Objectives
E=l=1=)

Multimodal Encoder

‘Feed Forward Feed Forward

ﬂ Image
Encoder

[I:l O O D] “A cat wearing
sunglasses.”

Input Image Queries Input Text



B Background BLIP2 Representation Learning Objectives

Subject Prompt Embedding %
————— .
4 1 >
Feed Forward
a Image , I Text — ) U-Net
Encoder Multimodal Encoder
v

T 41 T ? , Text Prompt Emb. T Subject Prompt Emb.
“train”

(OooO0)(@EoEm

|
|
|
I
Encoder :
|
|
|
|
|

A
Queries Subject —— - ? ----- |
Text “A train at the station,
the train is” 3
Input Subject Image Text Prompt Output Subject Image

[text prompt], the [subject text] i1s [subject prompt]"

6



B Background

Generating training 1image pair
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zero-sort subject-driven generation
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subject-driven image editing with attention control
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Results preview

Reference (a) T2I-Adapter (b) DEADIff
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B Contributions

B Disentangle style and semantic representation of the reference image

B Injecting image style/semantic representation to different

crossattention layers

B Established paired datasets
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B Disentangle style and semantic representation of the reference image

Reference A s i e
® ' ©“ Frozen f‘,Tramable:;|

L e SR e

Image -Former W
e » Encoder .--:I Q ‘, e

: . o
“Content”

Reference B (a)Training Target B

20



21

B Method

B Injecting image style/semantic representation to different
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Injecting image style/semantic representation to different crossattention layers
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Injecting image style/semantic representation to different crossattention layers

Q=2ZWQ,

K = Concat(c, W, c; Wi),

V = Concat(c,Wy. ,c; W),
QK™*

softmax A s Softmaa: V.
A & E ( 7 )



24

B Method

B Establishing paired datasets

B Text prompt combination

B |Image generation and collection

B Paired images selection
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B Experiments

B Evaluation

Style Similarity (SS)

Text Alignment capability (TA)
Image Quality (1Q)

Subjective Preference (SP)
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Quantitative Comparisons

Method SST 1(01) TAt SPt
InST [37] 0.215 5.148 0.237 6.3
CAST [36] 0.224 4922 0.282 8.7
StyTr? [3] 0.214 5.037 0.282 13.1
T2I-Adapter [17] 0.241 5.500 0.224 2.7
[P-Adapter [34] 0.274 5.598 0.155 -
DEAD:Iff 0229 5.840 0.284 69.0
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Ablations

Method  Style SimilarityT Text Alignment?
Baseline 0.274 0.148
+ DCM 0.259 0.224
+ STRE 0.222 0.286
+ SERE 0.221 0.287
DEAD:Iff 0.224 0.289

"A dog in a bucket."

Reference
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+SERE

DEADiff
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Ablations

Reference

"A cat wearing a hat."

SDbvlb Realistic Vison V5.1 DreamShaper V8
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