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Background: CLIP

Radford et al. Learning transferable visual models from natural language supervision. https://arxiv.org/abs/2103.00020
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Background: CLIP-ViT

• ViT Architecture
• Multi-head self-attention(MSA)

• MLP

• Residual connection

• CLS token as output  

• Projected to vision-language space

Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. https://arxiv.org/pdf/2010.11929
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Background: Heatmap-based Interpretability

Grad-CAM
• Heuristics: gradient of feature map highlights important regions

• Pixel-level visualization with Guided Backpropagation

• Suppress negative gradient by ReLU

Selvaraju et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. https://arxiv.org/abs/1610.02391
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Background: Heatmap-based Interpretability

Samek et al. Interpreting the Predictions of Complex ML Models by Layer-wise Relevance Propagation. https://arxiv.org/pdf/1611.08191.pdf

Attribute-based Heatmap Methods
• Define each variable’s attribution score to the output 

• Define a back propagation rule (e.g. Layer-wise Relevance Propagation)

Heatmap Methods Limitation
• Do not interpret models’ intermediate representation

• Only interpret localization-relevant features
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Background: Interpretability Summary

• Output Interpretability 

• Heatmap-based (e.g. Grad-CAM, LRP)

Cons: only interpret localization-relevant features

• Editing-based 

Use generative models (e.g. StyleGAN) to edit input images

Cons: rely on generative models 

• Representation Interpretability

• Invert features into image (e.g. Feature Visualization)

Cons: by optimization; subjectivity

• Interpret neurons & neuron connections (e.g. Rosetta Neurons)

• Text-based Interpretability 

• Use text to describe images/representations

• Interpret CLIP representations
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Background: Text-based Interpretability

Post-hoc Concept Bottleneck Model
• Map features to a text-based concept space

• Any pre-trained image encoder 

• Concept space constructed with a text encoder (e.g. CLIP)  

Yuksekgonul et al. Post-hoc concept bottleneck models. https://arxiv.org/abs/2205.15480
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Background: CLIP Interpretability

Feature Visualization of CLIP
• Maximize neuron activation

• Maximize similarity with the given text

Goh et al. Multimodal neurons in artificial neural networks. https://distill.pub/2021/multimodal-neurons
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Background: CLIP Interpretability

Understanding CLIP’s Spelling capability
• Train a learn-to-spell and a forget-to-spell model by optimizing 

opposite objectives

Materzynska et al. Disentangling visual and written concepts in CLIP. https://arxiv.org/abs/2206.07835 
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Method: Overview

• Decompose CLIP representation into direct contributions of each layer, each attention 

head, and each position (image token)

• Understanding heads
• Technique: label heads with text

• Application: reduce spurious correlation; property-specific image retrieval

• Understanding positions
• Technique: heatmap

• Application: zero-shot segmentation
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Method: Decomposition into Layers

• Each module directly updates the residual stream:

• Decompose the final representation:

• Direct effects: components in the equation (this paper)

Indirect effects: influence of early layers on later layers
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Experiments: Decomposition into Layers

• Use OpenCLIP trained on LAION-2B

• Mean-ablation: replace output components with mean values across the dataset in 

zero-shot classification task

• Conclusion

• MLPs have negligible direct effects

• Only the last MSAs have significant direct effects (this paper) 

MLP mean-ablation MSA mean-ablation
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Method: Decomposition into Heads & Positions

• One MSA component:

• All MSA components:

• Contract along certain dimension

• Head contribution

• Position(token) contribution

where 𝑖𝑖, 𝑙𝑙,ℎ represents token, layer, head
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Method: Understanding Heads

• Goal:

Find descriptions explaining the “principal components” of a head’s contribution

• Problem definition:

• Maximize 

𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝐾𝐾: the head’s contribution of all images

𝒯𝒯: the set of text descriptions to find, size 𝑚𝑚 hyperparam

𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗𝒯𝒯: projection onto the span of text representations in 𝒯𝒯
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Method: Understanding Heads

• Maximize

• Algorithm: TextSpan

• Step1: initialize a description pool using ChatGPT-3.5

• Step2: greedily select the description with highest variance of projection

• Step3: update all vectors to be orthogonal to the selected text representation 

• Step4: repeat Step2-3 until 𝑚𝑚 times
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Method: Understanding Heads

Greedy selection

Update contributions

Update text representations
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Experiments: Understanding Heads

Top-5 results of TextSpan applied to the last 4 layers of CLIP-ViT-L.

The roles of heads in brackets are annotated by human. 

Heads without clear roles.
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Experiments: Understanding Heads

Ablation study
• Project representation to the TextSpan bases

• Classification as evaluation

• Dataset: ImageNet

• Results

• ChatGPT descriptions is better than common words in 

English & random vectors

• Larger basis size 𝑚𝑚 is better (60 enough for 768 dims)

• Class-specific descriptions (28k) better than general 

descriptions (3.5k)



20

Experiments: Understanding Heads

Application 1: Reducing spurious cues for classification

• Dataset: Waterbirds

• Setting: Zero-shot classification

• Manually mean-ablated the heads relevant to “location”, according to TextSpan results

Comparison with CLIP and random ablation. Detailed comparison with CLIP.
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Experiments: Understanding Heads

Application 2: Property-based image retrieval

• Given a base image, retrieve its nearest neighbors for a certain head (by computing 

cosine similarity)
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Experiments: Understanding Positions

Same as evaluating heatmap-based methods        

• Heatmap visualization by calculation similarity between tokens & text representations

• Highlighted regions are more aligned with the text
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Experiments: Understanding Positions

Zero-shot segmentation 

• Method: binarize heatmap (with a threshold) to obtain a foreground / background 

segmentation

• Dataset: ImageNet-Segmentation (4,276 images from 445 categories)
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Experiments: Understanding Heads & Positions

Green / Red border heatmaps correspond to the descriptions most / least similar to 𝑐𝑐ℎ𝑒𝑒𝑒𝑒𝑒𝑒
𝑙𝑙,ℎ among TextSpan outputs. 
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Conclusion

• Interpreting CLIP image encoder by annotating heads with texts

• Application: removing spurious correlation, image retrieval

• Limitations and discussion:

• Indirect effects?

• Not all heads have clear roles

• Heads are annotated manually

• Analysis on text encoder and other architectures?
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