

# **Mean Flows for One-step Generative Modeling**

Zhengyang Geng<sup>1\*</sup> Mingyang Deng<sup>2</sup> Xingjian Bai<sup>2</sup> J. Zico Kolter<sup>1</sup> Kaiming He<sup>2</sup>

<sup>1</sup>CMU <sup>2</sup>MIT

arxiv 250519 2025.6.30 Minghao Liu







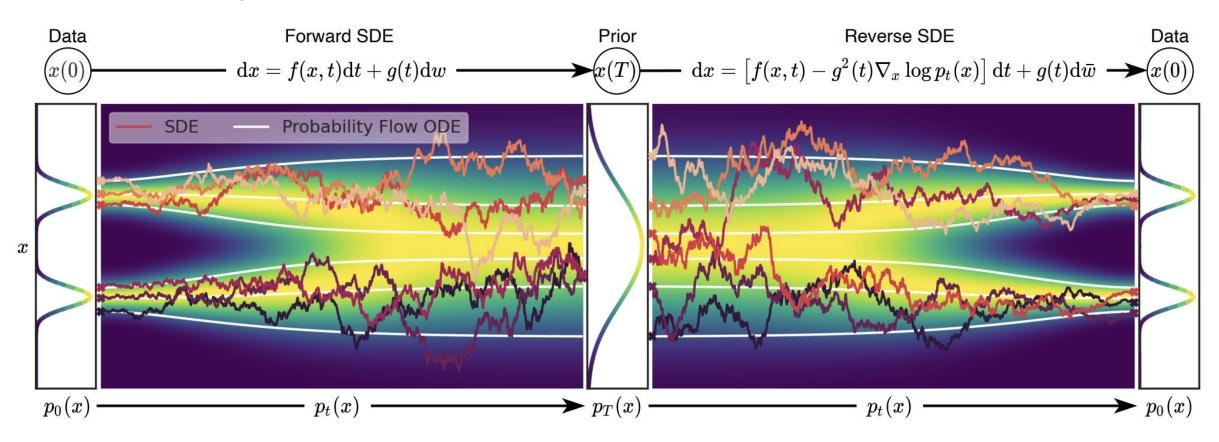
PART 02

Background





#### **Score Matching**





#### **Score Matching**

Data Forward SDE Prior Reverse SDE Data 
$$\underbrace{x(0)}$$
  $dx = f(x,t)dt + g(t)dw$   $dx = [f(x,t) - g^2(t)\nabla_x \log p_t(x)] dt + g(t)d\bar{w}$ 

Training: 
$$\theta^* = \arg\min_{\boldsymbol{\theta}} \mathbb{E}_t \Big\{ \lambda(t) \mathbb{E}_{\mathbf{x}(0)} \mathbb{E}_{\mathbf{x}(t)|\mathbf{x}(0)} \Big[ \|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}(t),t) - \nabla_{\mathbf{x}(t)} \log p_{0t}(\mathbf{x}(t) \mid \mathbf{x}(0)) \|_2^2 \Big] \Big\}.$$

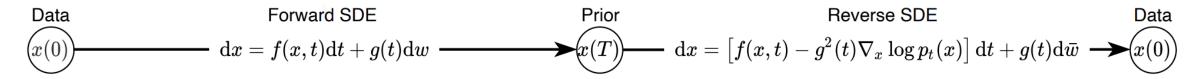
#### Sampling:

- 1. Predictor
- 2. Predictor-Corrector

$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})\right] dt,$$



#### **Score Matching**



Variance Preserving, VP: 
$$d\mathbf{x} = -\frac{1}{2}\beta(t)\mathbf{x} dt + \sqrt{\beta(t)} d\mathbf{w}$$
.

**Sub-VP:** 
$$d\mathbf{x} = -\frac{1}{2}\beta(t)\mathbf{x} dt + \sqrt{\beta(t)(1 - e^{-2\int_0^t \beta(s)ds})} d\mathbf{w}.$$



#### **Flow Matching**

Objective:  $\min_{\theta} \mathbb{E}_{t \sim \mathcal{U}[0,1], x_t \sim p_t} \|v_{\theta}(x_t,t) - u(x_t,t)\|^2$  (hard to compute)



Objective:  $\min_{\theta} \mathbb{E}_{t \sim \mathcal{U}[0,1], x_0 \sim p_0, x_1 \sim p_1, \epsilon \sim \mathcal{N}(0,I)} \|v_{\theta}(x_t,t) - \frac{x_1 - x_0}{1}\|^2$  (easy to compute)

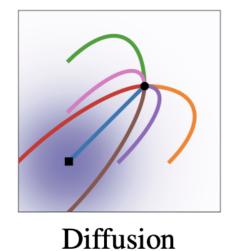
where 
$$x_t = (1-t)x_0 + tx_1 + \sigma(t)\epsilon$$

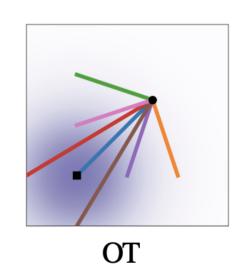
Simulation-Free: No need to solve ODE/SDE.



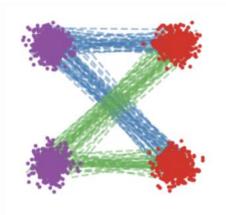
## **Flow Matching**

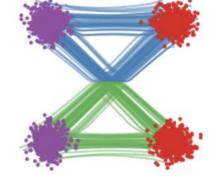
Ideal:





Reality:



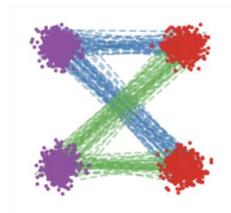


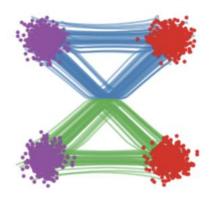
- (a) Linear interpolation
- $X_t = tX_1 + (1 t)X_0$  induced by  $(X_0, X_1)$
- (b) Rectified flow  $Z_t$



#### **Rectified flow**

$$\min_v \int_0^1 \mathbb{E}\left[\left\|\left(X_1-X_0
ight)-vig(X_t,\ tig)
ight\|^2
ight]\mathrm{d}t, \quad ext{ with } \quad X_t=tX_1+(1-t)X_0,$$





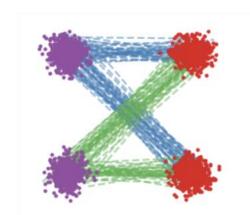
- (a) Linear interpolation
- $X_t = tX_1 + (1 t)X_0$  induced by  $(X_0, X_1)$
- (b) Rectified flow  $Z_t$

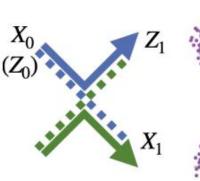
#### Step 1



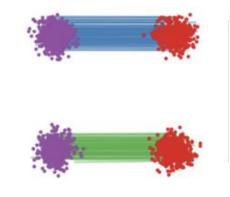
#### **Rectified flow**

$$\min_v \int_0^1 \mathbb{E}\left[\left\|\left(X_1-X_0
ight)-vig(X_t,\ tig)
ight\|^2
ight]\mathrm{d}t, \quad ext{ with } \quad X_t=tX_1+(1-t)X_0,$$









(a) Linear interpolation

$$X_t = tX_1 + (1 - t)X_0$$
 induced by  $(X_0, X_1)$ 

(b) Rectified flow  $Z_t$ 

Step 1

(c) Linear interpolation

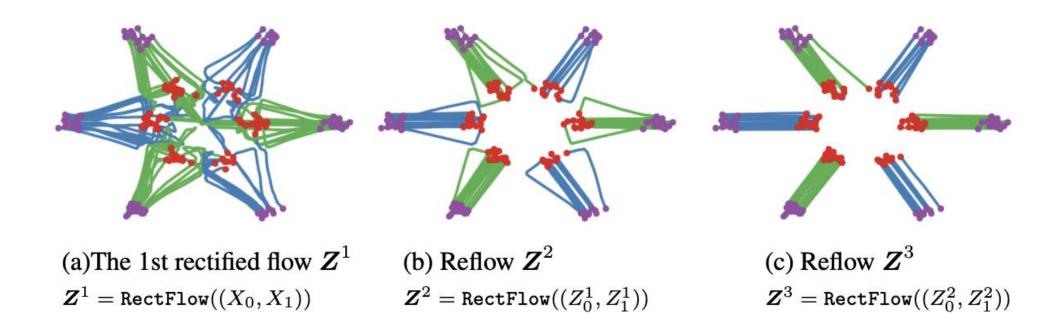
$$Z_t = tZ_1 + (1-t)Z_0$$

Step 2

(d) Rectified flow  $Z'_t$ induced by  $(Z_0, Z_1)$ 



#### **Rectified flow**





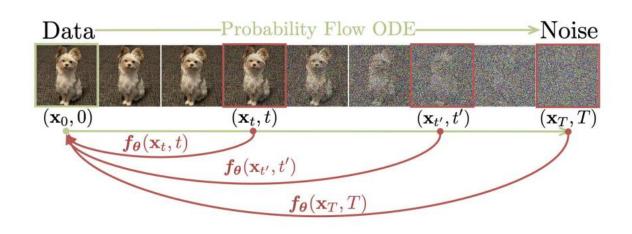
#### **Rectified flow**

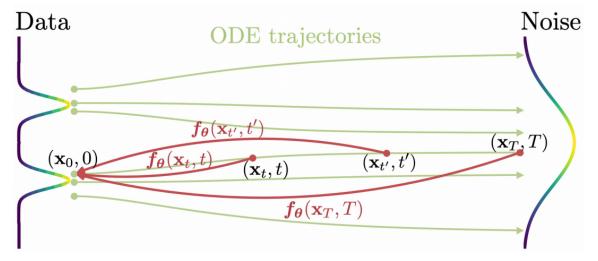
**Distillation**: 
$$\mathbb{E}\left[\left\|(Z_1^k-Z_0^k)-v(Z_0^k,0)\right\|^2\right]$$
 One-step (CIFAR-10 FID 4.85) Step 3



#### **Consistency Models**

Models of these mappings are called consistency models, as their outputs are trained to be consistent for points on the same trajectory.







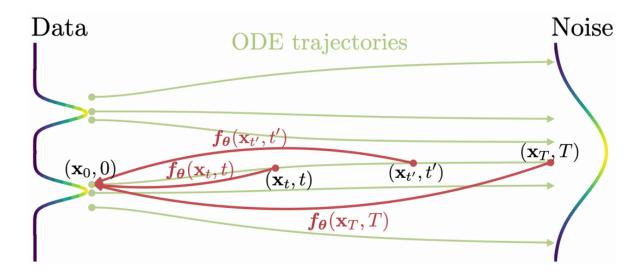
#### **Consistency Models**

Boundary condition:  $f(\mathbf{x}_{\epsilon}, \epsilon) = \mathbf{x}_{\epsilon}, \quad \epsilon = 0.002$ 

Two ways to implement boundary condition:

$$f_{\theta}(\mathbf{x},t) = \begin{cases} \mathbf{x} & t = \epsilon \\ F_{\theta}(\mathbf{x},t) & t \in (\epsilon,T] \end{cases}$$

$$f_{\theta}(\mathbf{x}, t) = c_{\text{skip}}(t)\mathbf{x} + c_{\text{out}}(t)F_{\theta}(\mathbf{x}, t)$$
  
 $c_{\text{skip}}(\epsilon) = 1$ , and  $c_{\text{out}}(\epsilon) = 0$ .





#### **Consistency Models**

#### Training Consistency Models via Distillation

#### **Algorithm 2** Consistency Distillation (CD)

**Input:** dataset  $\mathcal{D}$ , initial model parameter  $\boldsymbol{\theta}$ , learning rate  $\eta$ , ODE solver  $\Phi(\cdot,\cdot;\boldsymbol{\phi}), d(\cdot,\cdot), \lambda(\cdot)$ , and  $\mu$   $\boldsymbol{\theta}^- \leftarrow \boldsymbol{\theta}$ 

#### repeat

Sample 
$$\mathbf{x} \sim \mathcal{D}$$
 and  $n \sim \mathcal{U}[\![1, N-1]\!]$   
Sample  $\mathbf{x}_{t_{n+1}} \sim \mathcal{N}(\mathbf{x}; t_{n+1}^2 \mathbf{I})$   
 $\hat{\mathbf{x}}_{t_n}^{\phi} \leftarrow \mathbf{x}_{t_{n+1}} + (t_n - t_{n+1}) \Phi(\mathbf{x}_{t_{n+1}}, t_{n+1}; \phi)$   
 $\mathcal{L}(\theta, \theta^-; \phi) \leftarrow$   
 $\lambda(t_n) d(\mathbf{f}_{\theta}(\mathbf{x}_{t_{n+1}}, t_{n+1}), \mathbf{f}_{\theta^-}(\hat{\mathbf{x}}_{t_n}^{\phi}, t_n))$   
 $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\theta, \theta^-; \phi)$   
 $\theta^- \leftarrow \text{stopgrad}(\mu \theta^- + (1 - \mu)\theta)$   
until convergence

Distilling a pre-trained score model  $s_{\phi}(\mathbf{x},t)$ 



## **Consistency Models**

#### Training Consistency Models via Distillation

#### **Algorithm 2** Consistency Distillation (CD)

**Input:** dataset  $\mathcal{D}$ , initial model parameter  $\boldsymbol{\theta}$ , learning rate  $\eta$ , ODE solver  $\Phi(\cdot, \cdot; \boldsymbol{\phi})$ ,  $d(\cdot, \cdot)$ ,  $\lambda(\cdot)$ , and  $\mu$   $\boldsymbol{\theta}^- \leftarrow \boldsymbol{\theta}$ 

#### repeat

Sample 
$$\mathbf{x} \sim \mathcal{D}$$
 and  $n \sim \mathcal{U}[1, N-1]$   
Sample  $\mathbf{x}_{t_{n+1}} \sim \mathcal{N}(\mathbf{x}; t_{n+1}^2 \mathbf{I})$   
 $\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}} \leftarrow \mathbf{x}_{t_{n+1}} + (t_n - t_{n+1}) \Phi(\mathbf{x}_{t_{n+1}}, t_{n+1}; \boldsymbol{\phi})$   
 $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-; \boldsymbol{\phi}) \leftarrow$   
 $\lambda(t_n) d(\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t_{n+1}}, t_{n+1}), \boldsymbol{f}_{\boldsymbol{\theta}^-}(\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}}, t_n))$   
 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-; \boldsymbol{\phi})$   
 $\boldsymbol{\theta}^- \leftarrow \operatorname{stopgrad}(\mu \boldsymbol{\theta}^- + (1 - \mu) \boldsymbol{\theta})$ 

until convergence

One-step (CIFAR-10 FID 3.55)

Two-step (CIFAR-10 FID 2.93)

Limited by the quality of pre-trained diffusion models.



## **Consistency Models**

## Training Consistency Models in Isolation

#### **Algorithm 3** Consistency Training (CT)

**Input:** dataset  $\mathcal{D}$ , initial model parameter  $\boldsymbol{\theta}$ , learning rate  $\eta$ , step schedule  $N(\cdot)$ , EMA decay rate schedule  $\mu(\cdot)$ ,  $d(\cdot,\cdot)$ , and  $\lambda(\cdot)$  $\theta^- \leftarrow \theta$  and  $k \leftarrow 0$ repeat Sample  $\mathbf{x} \sim \mathcal{D}$ , and  $n \sim \mathcal{U}[1, N(k) - 1]$ Sample  $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$  $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-) \leftarrow$  $\lambda(t_n)d(\mathbf{f}_{\theta}(\mathbf{x}+t_{n+1}\mathbf{z},t_{n+1}),\mathbf{f}_{\theta^-}(\mathbf{x}+t_n\mathbf{z},t_n))$  $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\theta, \theta^{-})$  $\theta^- \leftarrow \operatorname{stopgrad}(\mu(k)\theta^- + (1 - \mu(k))\theta)$  $k \leftarrow k + 1$ until convergence

Isolation.

One-step (CIFAR-10 FID 8.70)

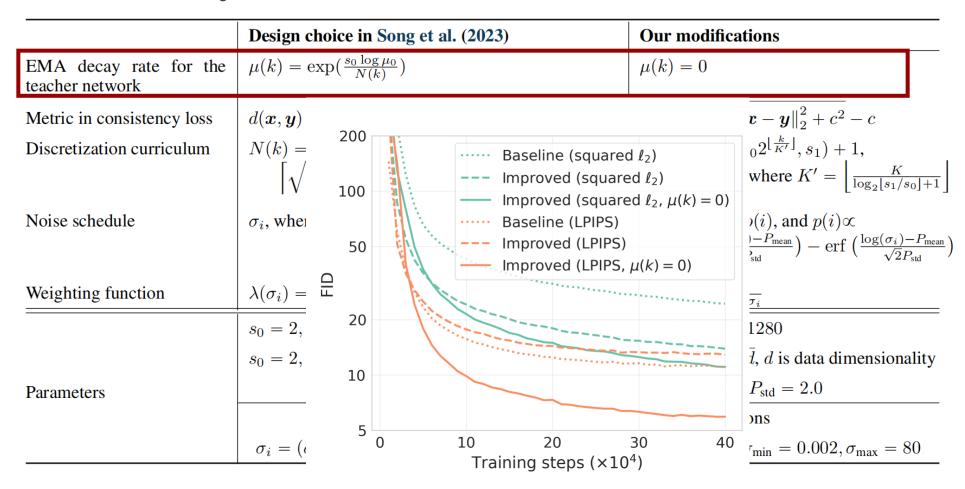
Two-step (CIFAR-10 FID 5.83)

Rely on LPIPS



|                                        | Design choice in Song et al. (2023)                                                                                                          | Our modifications                                                                                                                                                                                                                                                                                                                                              |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| EMA decay rate for the teacher network | $\mu(k) = \exp(\frac{s_0 \log \mu_0}{N(k)})$                                                                                                 | $\mu(k) = 0$                                                                                                                                                                                                                                                                                                                                                   |  |
| Metric in consistency loss             | $d(\boldsymbol{x}, \boldsymbol{y}) = \text{LPIPS}(\boldsymbol{x}, \boldsymbol{y})$                                                           | $d(x, y) = \sqrt{\ x - y\ _{2}^{2} + c^{2}} - c$                                                                                                                                                                                                                                                                                                               |  |
| Discretization curriculum              | $N(k) = \left[ \sqrt{\frac{k}{K}((s_1+1)^2 - s_0^2) + s_0^2} - 1 \right] + 1$                                                                | $N(k) = \min(s_0 2^{\left\lfloor \frac{k}{K'} \right\rfloor}, s_1) + 1,$ where $K' = \left\lfloor \frac{K}{\log_2 \left\lfloor s_1 / s_0 \right\rfloor + 1} \right\rfloor$                                                                                                                                                                                     |  |
| Noise schedule                         | $\sigma_i$ , where $i \sim \mathcal{U}[\![1,N(k)-1]\!]$                                                                                      | $ \left  \begin{array}{l} \sigma_i, \text{ where } i \sim p(i), \text{ and } p(i) \propto \\ \operatorname{erf} \left( \frac{\log(\sigma_{i+1}) - P_{\operatorname{mean}}}{\sqrt{2}P_{\operatorname{std}}} \right) - \operatorname{erf} \left( \frac{\log(\sigma_i) - P_{\operatorname{mean}}}{\sqrt{2}P_{\operatorname{std}}} \right) \end{aligned} \right  $ |  |
| Weighting function                     | $\lambda(\sigma_i) = 1$                                                                                                                      | $\lambda(\sigma_i) = \frac{1}{\sigma_{i+1} - \sigma_i}$                                                                                                                                                                                                                                                                                                        |  |
|                                        | $s_0 = 2, s_1 = 150, \mu_0 = 0.9$ on CIFAR-10                                                                                                | $s_0 = 10, s_1 = 1280$                                                                                                                                                                                                                                                                                                                                         |  |
|                                        | $s_0 = 2, s_1 = 200, \mu_0 = 0.95$ on ImageNet $64 \times 64$                                                                                | $c = 0.00054\sqrt{d}$ , d is data dimensionality                                                                                                                                                                                                                                                                                                               |  |
| Parameters                             |                                                                                                                                              | $P_{\text{mean}} = -1.1, P_{\text{std}} = 2.0$                                                                                                                                                                                                                                                                                                                 |  |
|                                        | $k \in [0, K]$ , where K is the total training iterations                                                                                    |                                                                                                                                                                                                                                                                                                                                                                |  |
|                                        | $\sigma_i = (\sigma_{\min}^{1/\rho} + \frac{i-1}{N(k)-1}(\sigma_{\max}^{1/\rho} - \sigma_{\min}^{1/\rho}))^{\rho}, \text{ where } i \in [1]$ | $[N(k)], \rho = 7, \sigma_{\min} = 0.002, \sigma_{\max} = 80$                                                                                                                                                                                                                                                                                                  |  |







|                                        | Design choice in Song et al. (2023)                                                                                                          | Our modifications                                                                                                                       |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|
| EMA decay rate for the teacher network | $\mu(k) = \exp(\frac{s_0 \log \mu_0}{N(k)})$                                                                                                 | $\mu(k) = 0$                                                                                                                            |  |
| Metric in consistency loss             | $d(\boldsymbol{x}, \boldsymbol{y}) = \text{LPIPS}(\boldsymbol{x}, \boldsymbol{y})$                                                           | $d(x, y) = \sqrt{\ x - y\ _{2}^{2} + c^{2}} - c$                                                                                        |  |
| Discretization curriculum              | $N(k) = \left[ \sqrt{\frac{k}{K}((s_1+1)^2 - s_0^2) + s_0^2} - 1 \right] + 1$                                                                | $N(k) = \min(s_0 2^{\lfloor \frac{k}{K'} \rfloor}, s_1) + 1,$ where $K' = \lfloor \frac{K}{\log_2 \lfloor s_1/s_0 \rfloor + 1} \rfloor$ |  |
| Noise schedule                         | $\sigma_i$ , where $i \sim \mathcal{U}[\![1,N(k)-1]\!]$                                                                                      |                                                                                                                                         |  |
| Weighting function                     | $\lambda(\sigma_i) = 1$                                                                                                                      | $\lambda(\sigma_i) = \frac{1}{\sigma_{i+1} - \sigma_i}$                                                                                 |  |
|                                        | $s_0 = 2, s_1 = 150, \mu_0 = 0.9$ on CIFAR-10                                                                                                | $s_0 = 10, s_1 = 1280$                                                                                                                  |  |
|                                        | $s_0 = 2, s_1 = 200, \mu_0 = 0.95$ on ImageNet $64 \times 64$                                                                                | $c = 0.00054\sqrt{d}$ , d is data dimensionality                                                                                        |  |
| Parameters                             |                                                                                                                                              | $P_{\text{mean}} = -1.1, P_{\text{std}} = 2.0$                                                                                          |  |
|                                        | $k \in [0, K]$ , where $K$ is the total training iterations                                                                                  |                                                                                                                                         |  |
|                                        | $\sigma_i = (\sigma_{\min}^{1/\rho} + \frac{i-1}{N(k)-1}(\sigma_{\max}^{1/\rho} - \sigma_{\min}^{1/\rho}))^{\rho}, \text{ where } i \in [1]$ | $N(k)$ , $\rho = 7$ , $\sigma_{\min} = 0.002$ , $\sigma_{\max} = 80$                                                                    |  |

| METHOD                                            | NFE (\lambda) | FID (↓) | IS ( <b>†</b> ) |
|---------------------------------------------------|---------------|---------|-----------------|
| Fast samplers & distillation for diffusion models |               |         |                 |
| DDIM (Song et al., 2020)                          | 10            | 13.36   |                 |
| DPM-solver-fast (Lu et al., 2022)                 | 10            | 4.70    |                 |
| 3-DEIS (Zhang & Chen, 2022)                       | 10            | 4.17    |                 |
| UniPC (Zhao et al., 2023)                         | 10            | 3.87    |                 |
| Knowledge Distillation (Luhman & Luhman, 2021)    | 1             | 9.36    |                 |
| DFNO (LPIPS) (Zheng et al., 2022)                 | 1             | 3.78    |                 |
| 2-Rectified Flow (+distill) (Liu et al., 2022)    | 1             | 4.85    | 9.01            |
| TRACT (Berthelot et al., 2023)                    | 1             | 3.78    |                 |
|                                                   | 2             | 3.32    |                 |
| Diff-Instruct (Luo et al., 2023)                  | 1             | 4.53    | 9.89            |
| PD* (Salimans & Ho, 2022)                         | 1             | 8.34    | 8.69            |
|                                                   | 2             | 5.58    | 9.05            |
| CD (LPIPS) (Song et al., 2023)                    | 1             | 3.55    | 9.48            |
|                                                   | 2             | 2.93    | 9.75            |
| Direct Generation                                 |               |         |                 |
| Score SDE (Song et al., 2021)                     | 2000          | 2.38    | 9.83            |
| Score SDE (deep) (Song et al., 2021)              | 2000          | 2.20    | 9.89            |
| DDPM (Ho et al., 2020)                            | 1000          | 3.17    | 9.46            |
| LSGM (Vahdat et al., 2021)                        | 147           | 2.10    |                 |
| PFGM (Xu et al., 2022)                            | 110           | 2.35    | 9.68            |
| EDM* (Karras et al., 2022)                        | 35            | 2.04    | 9.84            |
| EDM-G++ (Kim et al., 2023)                        | 35            | 1.77    |                 |
| IGEBM (Du & Mordatch, 2019)                       | 60            | 40.6    | 6.02            |
| NVAE (Vahdat & Kautz, 2020)                       | 1             | 23.5    | 7.18            |
| Glow (Kingma & Dhariwal, 2018)                    | 1             | 48.9    | 3.92            |
| Residual Flow (Chen et al., 2019)                 | 1             | 46.4    |                 |
| BigGAN (Brock et al., 2019)                       | 1             | 14.7    | 9.22            |
| StyleGAN2 (Karras et al., 2020b)                  | 1             | 8.32    | 9.21            |
| StyleGAN2-ADA (Karras et al., 2020a)              | 1             | 2.92    | 9.83            |
| CT (LPIPS) (Song et al., 2023)                    | 1             | 8.70    | 8.49            |
|                                                   | 2             | 5.83    | 8.85            |
| iCT (ours)                                        | 1             | 2.83    | 9.54            |
|                                                   | 2             | 2.46    | 9.80            |
| iCT-deep (ours)                                   | 1             | 2.51    | 9.76            |
| -                                                 | 2             | 2.24    | 9.89            |

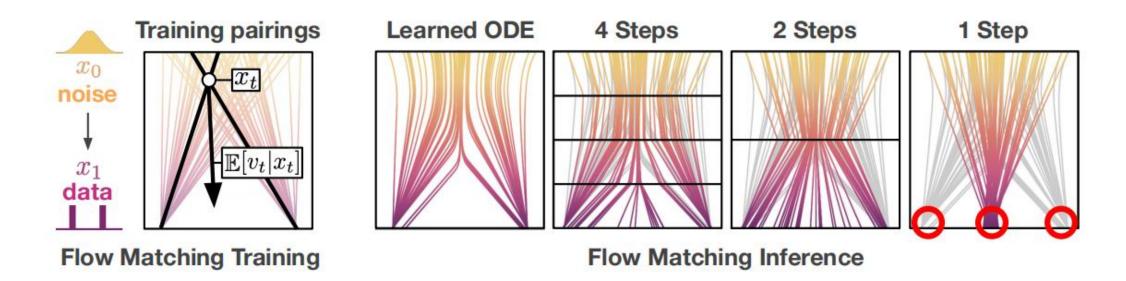




#### **Shortcut Models**

Reflow: Multi-stage, Few-step ambiguity problem

Consistency Model: Too many tricks, Hard to train

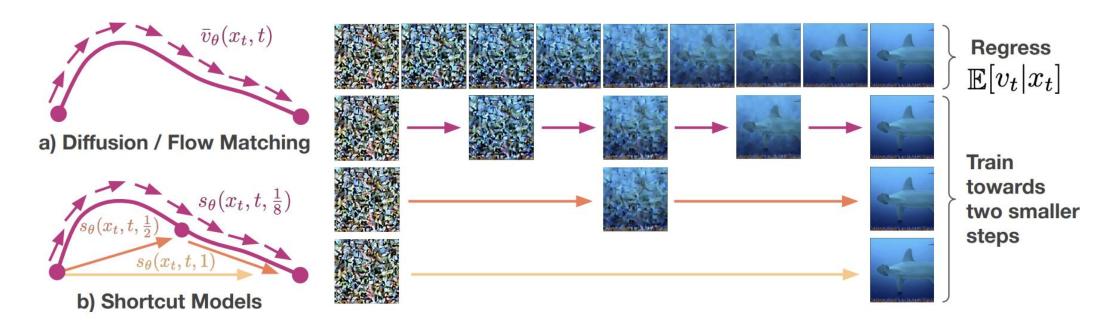




#### **Shortcut Models**

Conditioning the model not only on the timestep t but also on a desired step size d.

$$x'_{t+d} = x_t + s(x_t, t, d) d.$$



Frans K, Hafner D, Levine S, et al. One step diffusion via shortcut models. ICLR, 2025.



#### **Shortcut Models**

Conditioning the model not only on the timestep t but also on a desired step size d. Split the batch into two fraction

d=0: the shortcut is equivalent to the flow.

d>0: one shortcut step equals two consecutive shortcut steps of half the size

$$\mathcal{L}^{\mathrm{S}}(\theta) = E_{x_0 \sim \mathcal{N}, \ x_1 \sim D, \ (t,d) \sim p(t,d)} \Big[ \underbrace{ \left\| s_{\theta}(x_t,t,0) - (x_1 - x_0) \right\|^2}_{\text{Flow-Matching}} + \underbrace{ \left\| s_{\theta}(x_t,t,2d) - s_{\text{target}} \right\|^2}_{\text{Self-Consistency}} \Big],$$
 where  $s_{\text{target}} = s_{\theta}(x_t,t,d)/2 + s_{\theta}(x'_{t+d},t,d)/2$  and  $x'_{t+d} = x_t + s_{\theta}(x_t,t,d)d$ .



#### **Shortcut Models**

Batch Mixing: 75% d=0 & 25% d>0

Weight Decay: 0.1

EMA version of  $s_t$  and  $s_{t+d}$ 

No results on CIFAR-10 and ImageNet-64



PART 03

Method





#### **Mean Flows**

Flow Matching & Rectified Flow: Real Flow trajectories are always curved.

Integral difficulty: Neural networks are difficult to accurately learn a complex integral operator, for one-step generation.

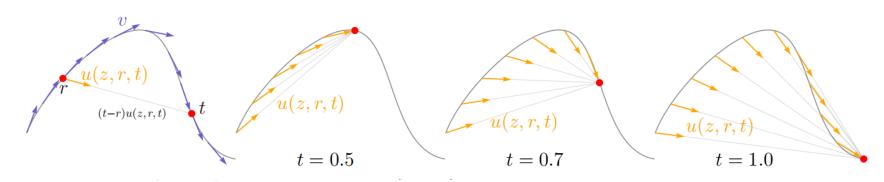
Consistency Model: No solid theoretical foundation and training may be unstable.



#### **Mean Flows**

Average Velocity Field:

$$u(z_t, r, t) \triangleq \frac{1}{t - r} \int_r^t v(z_\tau, \tau) d\tau.$$



Relation between 
$$u$$
 and  $v$ : 
$$\underbrace{u(z_t,r,t)}_{\text{average vel.}} = \underbrace{v(z_t,t)}_{\text{instant. vel.}} - (t-r) \underbrace{\frac{d}{dt} u(z_t,r,t)}_{\text{time derivative}} \quad \text{(MeanFlow Identity)}$$

$$\frac{d}{dt}u(z_t,r,t) = \frac{dz_t}{dt}\partial_z u + \frac{dr}{dt}\partial_r u + \frac{dt}{dt}\partial_t u. \implies \frac{d}{dt}u(z_t,r,t) = v(z_t,t)\partial_z u + \partial_t u,$$



#### **Mean Flows**

Training with Average Velocity:

$$\mathcal{L}(\theta) = \mathbb{E} \left\| u_{\theta}(z_t, r, t) - \operatorname{sg}(u_{\text{tgt}}) \right\|_2^2,$$
where 
$$u_{\text{tgt}} = v(z_t, t) - (t - r) \left( v(z_t, t) \partial_z u_{\theta} + \partial_t u_{\theta} \right),$$

#### **Algorithm 1** MeanFlow: Training.

Note: in PyTorch and JAX, jvp returns the function output and JVP.

```
# fn(z, r, t): function to predict u
# x: training batch

t, r = sample_t_r()
e = randn_like(x)

z = (1 - t) * x + t * e
v = e - x

u, dudt = jvp(fn, (z, r, t), (v, 0, 1))

u_tgt = v - (t - r) * dudt
error = u - stopgrad(u_tgt)

loss = metric(error)
```

#### **Algorithm 2** MeanFlow: 1-step Sampling

```
e = randn(x_shape)
x = e - fn(e, r=0, t=1)
```



#### **Mean Flows**

Mean Flows with Guidance:

New Ground-truth Field:  $v^{\text{cfg}}(z_t, t \mid \mathbf{c}) \triangleq \omega v(z_t, t \mid \mathbf{c}) + (1 - \omega) v(z_t, t),$ 

New Average Velocity:  $u^{\text{cfg}}(z_t, r, t \mid \mathbf{c}) = v^{\text{cfg}}(z_t, t \mid \mathbf{c}) - (t - r) \frac{d}{dt} u^{\text{cfg}}(z_t, r, t \mid \mathbf{c}).$ 

Training with Guidance:  $\mathcal{L}(\theta) = \mathbb{E} \left\| u_{\theta}^{\text{cfg}}(z_t, r, t \mid \mathbf{c}) - \text{sg}(u_{\text{tgt}}) \right\|_2^2,$ 

where  $u_{\text{tgt}} = \tilde{v}_t - (t - r) (\tilde{v}_t \partial_z u_{\theta}^{\text{cfg}} + \partial_t u_{\theta}^{\text{cfg}}).$ 



PART 04

Experiments





ImageNet generation at 256×256 resolution (A latent space of 32×32×4), 1-NFE,
 On the latent space of a pre-trained VAE tokenizer.

#### Ablation:

| % of $r\neq t$ | FID, 1-NFE |
|----------------|------------|
| 0% (= FM)      | 328.91     |
| 25%            | 61.06      |
| 50%            | 63.14      |
| 100%           | 67.32      |

| jvp tangent | FID, 1-NFE |
|-------------|------------|
| (v, 0, 1)   | 61.06      |
| (v, 0, 0)   | 268.06     |
| (v, 1, 0)   | 329.22     |
| (v,1,1)     | 137.96     |

| pos. embed  | FID, 1-NFE |
|-------------|------------|
| (t,r)       | 61.75      |
| (t, t-r)    | 61.06      |
| (t, r, t-r) | 63.98      |
| t-r only    | 63.13      |

(a) **Ratio of sampling**  $r\neq t$ . The 0% entry reduces to the standard Flow Matching baseline.

(b) **JVP computation**. The correct jvp tangent is (v, 0, 1) for Jacobian  $(\partial_z u, \partial_r u, \partial_t u)$ .

(c) **Positional embedding.** The network is conditioned on the embeddings applied to the specified variables.

| t, r sampler       | FID, 1-NFE |
|--------------------|------------|
| uniform(0, 1)      | 65.90      |
| lognorm(-0.2, 1.0) | 63.83      |
| lognorm(-0.2, 1.2) | 64.72      |
| lognorm(-0.4, 1.0) | 61.06      |
| lognorm(-0.4, 1.2) | 61.79      |

| p   | FID, 1-NFE |
|-----|------------|
| 0.0 | 79.75      |
| 0.5 | 63.98      |
| 1.0 | 61.06      |
| 1.5 | 66.57      |
| 2.0 | 69.19      |

 ω
 FID, 1-NFE

 1.0 (w/o cfg)
 61.06

 1.5
 33.33

 2.0
 20.15

 3.0
 15.53

 5.0
 20.75

(d) **Time samplers.** t and r are sampled from the specific sampler.

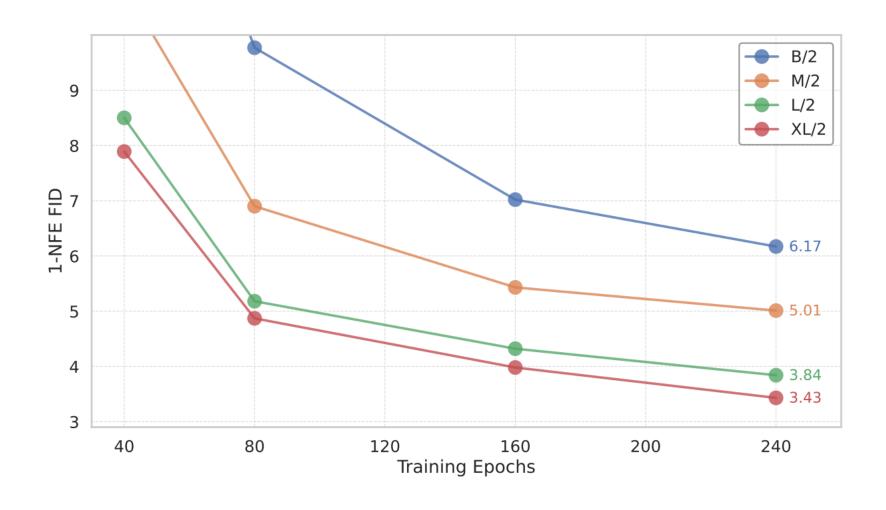
(e) **Loss metrics.** p=0 is squared L2 loss. p=0.5 is Pseudo-Huber loss.

$$w = 1/(\|\Delta\|_2^2 + c)^p,$$

(f) **CFG scale:**. Our method supports 1-NFE CFG sampling.



# • Scalability:





# Comparisons with Prior Work:

| method                            | params | NFE        | FID   |  |
|-----------------------------------|--------|------------|-------|--|
| 1-NFE diffusion/flow from scratch |        |            |       |  |
| iCT-XL/2 [43] <sup>†</sup>        | 675M   | 1          | 34.24 |  |
| Shortcut-XL/2 [13]                | 675M   | 1          | 10.60 |  |
| MeanFlow-B/2                      | 131M   | 1          | 6.17  |  |
| MeanFlow-M/2                      | 308M   | 1          | 5.01  |  |
| MeanFlow-L/2                      | 459M   | 1          | 3.84  |  |
| MeanFlow-XL/2                     | 676M   | 1          | 3.43  |  |
| 2-NFE diffusion/flow from scratch |        |            |       |  |
| iCT-XL/2 [43] <sup>†</sup>        | 675M   | 2          | 20.30 |  |
| iMM-XL/2 [52]                     | 675M   | $1\times2$ | 7.77  |  |
| MeanFlow-XL/2                     | 676M   | 2          | 2.93  |  |
| MeanFlow-XL/2+                    | 676M   | 2          | 2.20  |  |

| method                | params | NFE            | FID   |
|-----------------------|--------|----------------|-------|
| GANs                  |        |                |       |
| BigGAN [5]            | 112M   | 1              | 6.95  |
| GigaGAN [21]          | 569M   | 1              | 3.45  |
| StyleGAN-XL [40]      | 166M   | 1              | 2.30  |
| autoregressive/maskin | g      |                |       |
| AR w/ VQGAN [10]      | 227M   | 1024           | 26.52 |
| MaskGIT [6]           | 227M   | 8              | 6.18  |
| VAR-d30 [47]          | 2B     | $10\times2$    | 1.92  |
| MAR-H [27]            | 943M   | $256\times2$   | 1.55  |
| diffusion/flow        |        |                |       |
| ADM [8]               | 554M   | $250\times2$   | 10.94 |
| LDM-4-G [37]          | 400M   | $250\times2$   | 3.60  |
| SimDiff [20]          | 2B     | $512 \times 2$ | 2.77  |
| DiT-XL/2 [34]         | 675M   | $250\times2$   | 2.27  |
| SiT-XL/2 [33]         | 675M   | $250\times2$   | 2.06  |
| SiT-XL/2+REPA [51]    | 675M   | $250\times2$   | 1.42  |



Comparisons with Prior Work:

| method   | precond    | NFE | FID  |
|----------|------------|-----|------|
| iCT [43] | EDM        | 1   | 2.83 |
| ECT [15] | <b>EDM</b> | 1   | 3.60 |
| sCT [31] | <b>EDM</b> | 1   | 2.97 |
| IMM [52] | <b>EDM</b> | 1   | 3.20 |
| MeanFlow | none       | 1   | 2.92 |

Table 3: Unconditional CIFAR-10.



## 1-NFE Generation Results



#### **Conclusions**



 Proposes modeling average velocity instead of instantaneous velocity for generative flows, enabling direct prediction of endpoint displacement in one step.

• Establishes a mathematical link between average and instantaneous velocities via a differential relation, eliminating need for integral computations during training.

 Demonstrates 3.43 FID on ImageNet 256×256 with true 1-NFE sampling, narrowing the gap between one-step and multi-step diffusion models.



# Thanks for Listening!