

Mean Flows for One-step Generative Modeling

Zhengyang Geng^{1*} Mingyang Deng² Xingjian Bai² J. Zico Kolter¹ Kaiming He²

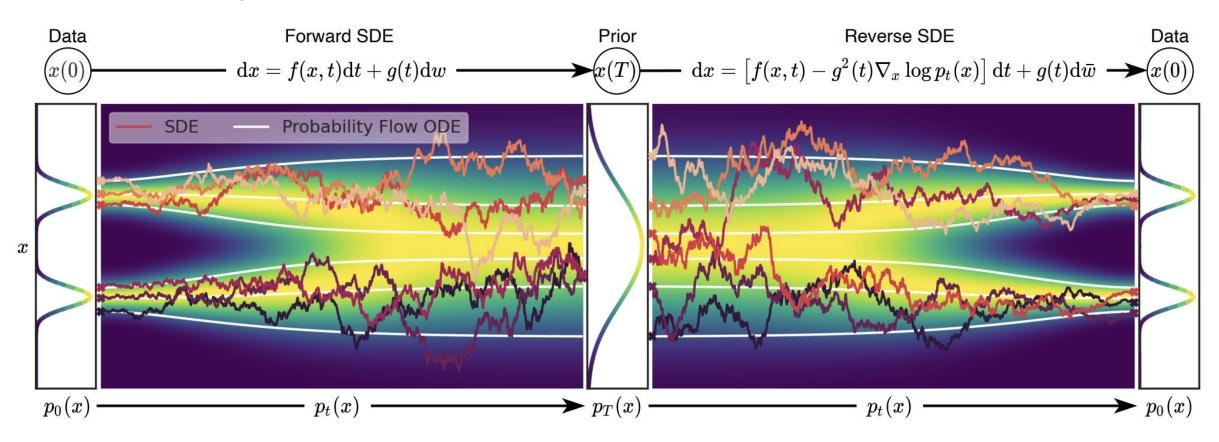
¹CMU ²MIT

arxiv 250519 2025.6.30 Minghao Liu

PART 02

Background

Score Matching



Score Matching

Data Forward SDE Prior Reverse SDE Data
$$\underbrace{x(0)}$$
 $dx = f(x,t)dt + g(t)dw$ $dx = [f(x,t) - g^2(t)\nabla_x \log p_t(x)] dt + g(t)d\bar{w}$

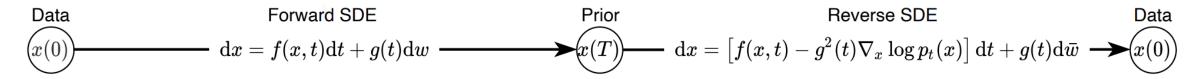
Training:
$$\theta^* = \arg\min_{\boldsymbol{\theta}} \mathbb{E}_t \Big\{ \lambda(t) \mathbb{E}_{\mathbf{x}(0)} \mathbb{E}_{\mathbf{x}(t)|\mathbf{x}(0)} \Big[\|\mathbf{s}_{\boldsymbol{\theta}}(\mathbf{x}(t),t) - \nabla_{\mathbf{x}(t)} \log p_{0t}(\mathbf{x}(t) \mid \mathbf{x}(0)) \|_2^2 \Big] \Big\}.$$

Sampling:

- 1. Predictor
- 2. Predictor-Corrector

$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - \frac{1}{2}g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})\right] dt,$$

Score Matching



Variance Preserving, VP:
$$d\mathbf{x} = -\frac{1}{2}\beta(t)\mathbf{x} dt + \sqrt{\beta(t)} d\mathbf{w}$$
.

Sub-VP:
$$d\mathbf{x} = -\frac{1}{2}\beta(t)\mathbf{x} dt + \sqrt{\beta(t)(1 - e^{-2\int_0^t \beta(s)ds})} d\mathbf{w}.$$

Flow Matching

Objective: $\min_{\theta} \mathbb{E}_{t \sim \mathcal{U}[0,1], x_t \sim p_t} \|v_{\theta}(x_t,t) - u(x_t,t)\|^2$ (hard to compute)

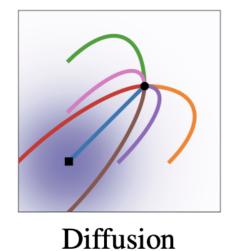
Objective: $\min_{\theta} \mathbb{E}_{t \sim \mathcal{U}[0,1], x_0 \sim p_0, x_1 \sim p_1, \epsilon \sim \mathcal{N}(0,I)} \|v_{\theta}(x_t,t) - \frac{x_1 - x_0}{1}\|^2$ (easy to compute)

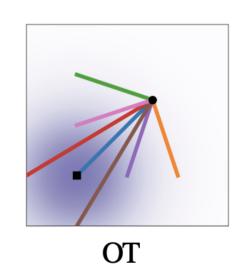
where
$$x_t = (1-t)x_0 + tx_1 + \sigma(t)\epsilon$$

Simulation-Free: No need to solve ODE/SDE.

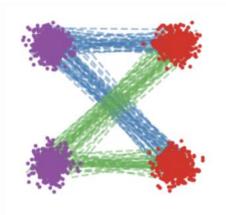
Flow Matching

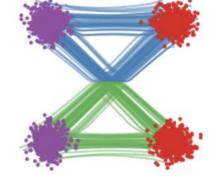
Ideal:





Reality:

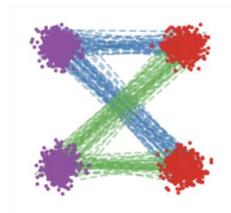


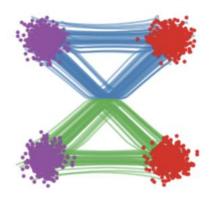


- (a) Linear interpolation
- $X_t = tX_1 + (1 t)X_0$ induced by (X_0, X_1)
- (b) Rectified flow Z_t

Rectified flow

$$\min_v \int_0^1 \mathbb{E}\left[\left\|\left(X_1-X_0
ight)-vig(X_t,\ tig)
ight\|^2
ight]\mathrm{d}t, \quad ext{ with } \quad X_t=tX_1+(1-t)X_0,$$



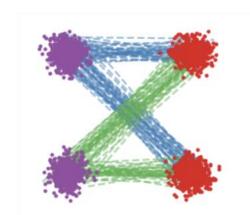


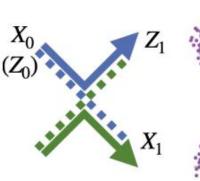
- (a) Linear interpolation
- $X_t = tX_1 + (1 t)X_0$ induced by (X_0, X_1)
- (b) Rectified flow Z_t

Step 1

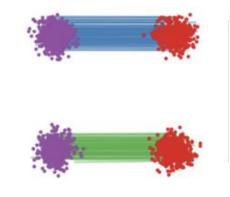
Rectified flow

$$\min_v \int_0^1 \mathbb{E}\left[\left\|\left(X_1-X_0
ight)-vig(X_t,\ tig)
ight\|^2
ight]\mathrm{d}t, \quad ext{ with } \quad X_t=tX_1+(1-t)X_0,$$









(a) Linear interpolation

$$X_t = tX_1 + (1 - t)X_0$$
 induced by (X_0, X_1)

(b) Rectified flow Z_t

Step 1

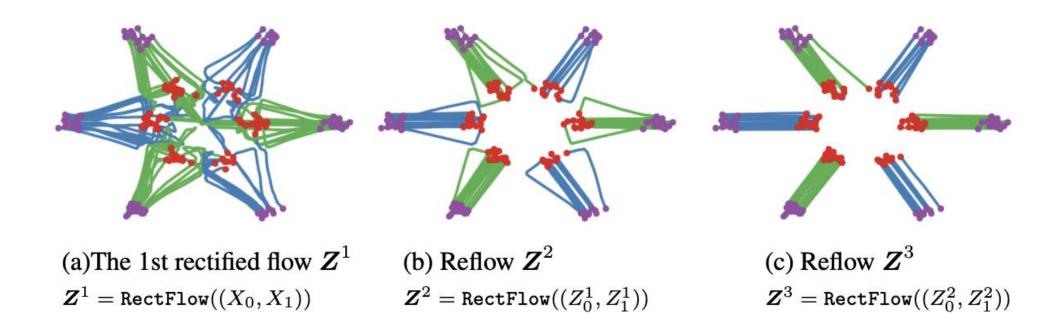
(c) Linear interpolation

$$Z_t = tZ_1 + (1-t)Z_0$$

Step 2

(d) Rectified flow Z'_t induced by (Z_0, Z_1)

Rectified flow

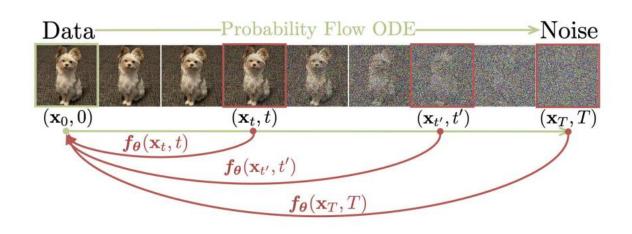


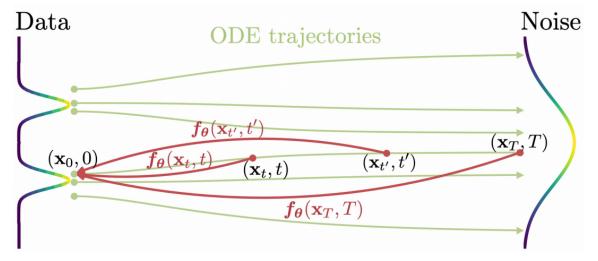
Rectified flow

Distillation:
$$\mathbb{E}\left[\left\|(Z_1^k-Z_0^k)-v(Z_0^k,0)\right\|^2\right]$$
 One-step (CIFAR-10 FID 4.85) Step 3

Consistency Models

Models of these mappings are called consistency models, as their outputs are trained to be consistent for points on the same trajectory.





Consistency Models

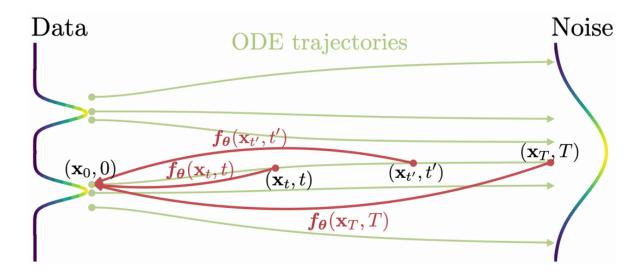
Boundary condition: $f(\mathbf{x}_{\epsilon}, \epsilon) = \mathbf{x}_{\epsilon}, \quad \epsilon = 0.002$

Two ways to implement boundary condition:

$$f_{\theta}(\mathbf{x},t) = \begin{cases} \mathbf{x} & t = \epsilon \\ F_{\theta}(\mathbf{x},t) & t \in (\epsilon,T] \end{cases}$$

$$f_{\theta}(\mathbf{x}, t) = c_{\text{skip}}(t)\mathbf{x} + c_{\text{out}}(t)F_{\theta}(\mathbf{x}, t)$$

 $c_{\text{skip}}(\epsilon) = 1$, and $c_{\text{out}}(\epsilon) = 0$.



Consistency Models

Training Consistency Models via Distillation

Algorithm 2 Consistency Distillation (CD)

Input: dataset \mathcal{D} , initial model parameter $\boldsymbol{\theta}$, learning rate η , ODE solver $\Phi(\cdot,\cdot;\boldsymbol{\phi}), d(\cdot,\cdot), \lambda(\cdot)$, and μ $\boldsymbol{\theta}^- \leftarrow \boldsymbol{\theta}$

repeat

Sample
$$\mathbf{x} \sim \mathcal{D}$$
 and $n \sim \mathcal{U}[\![1, N-1]\!]$
Sample $\mathbf{x}_{t_{n+1}} \sim \mathcal{N}(\mathbf{x}; t_{n+1}^2 \mathbf{I})$
 $\hat{\mathbf{x}}_{t_n}^{\phi} \leftarrow \mathbf{x}_{t_{n+1}} + (t_n - t_{n+1}) \Phi(\mathbf{x}_{t_{n+1}}, t_{n+1}; \phi)$
 $\mathcal{L}(\theta, \theta^-; \phi) \leftarrow$
 $\lambda(t_n) d(\mathbf{f}_{\theta}(\mathbf{x}_{t_{n+1}}, t_{n+1}), \mathbf{f}_{\theta^-}(\hat{\mathbf{x}}_{t_n}^{\phi}, t_n))$
 $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\theta, \theta^-; \phi)$
 $\theta^- \leftarrow \text{stopgrad}(\mu \theta^- + (1 - \mu)\theta)$
until convergence

Distilling a pre-trained score model $s_{\phi}(\mathbf{x},t)$

Consistency Models

Training Consistency Models via Distillation

Algorithm 2 Consistency Distillation (CD)

Input: dataset \mathcal{D} , initial model parameter $\boldsymbol{\theta}$, learning rate η , ODE solver $\Phi(\cdot, \cdot; \boldsymbol{\phi})$, $d(\cdot, \cdot)$, $\lambda(\cdot)$, and μ $\boldsymbol{\theta}^- \leftarrow \boldsymbol{\theta}$

repeat

Sample
$$\mathbf{x} \sim \mathcal{D}$$
 and $n \sim \mathcal{U}[1, N-1]$
Sample $\mathbf{x}_{t_{n+1}} \sim \mathcal{N}(\mathbf{x}; t_{n+1}^2 \mathbf{I})$
 $\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}} \leftarrow \mathbf{x}_{t_{n+1}} + (t_n - t_{n+1}) \Phi(\mathbf{x}_{t_{n+1}}, t_{n+1}; \boldsymbol{\phi})$
 $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-; \boldsymbol{\phi}) \leftarrow$
 $\lambda(t_n) d(\boldsymbol{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t_{n+1}}, t_{n+1}), \boldsymbol{f}_{\boldsymbol{\theta}^-}(\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}}, t_n))$
 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-; \boldsymbol{\phi})$
 $\boldsymbol{\theta}^- \leftarrow \operatorname{stopgrad}(\mu \boldsymbol{\theta}^- + (1 - \mu) \boldsymbol{\theta})$

until convergence

One-step (CIFAR-10 FID 3.55)

Two-step (CIFAR-10 FID 2.93)

Limited by the quality of pre-trained diffusion models.

Consistency Models

Training Consistency Models in Isolation

Algorithm 3 Consistency Training (CT)

Input: dataset \mathcal{D} , initial model parameter $\boldsymbol{\theta}$, learning rate η , step schedule $N(\cdot)$, EMA decay rate schedule $\mu(\cdot)$, $d(\cdot,\cdot)$, and $\lambda(\cdot)$ $\theta^- \leftarrow \theta$ and $k \leftarrow 0$ repeat Sample $\mathbf{x} \sim \mathcal{D}$, and $n \sim \mathcal{U}[1, N(k) - 1]$ Sample $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ $\mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-) \leftarrow$ $\lambda(t_n)d(\mathbf{f}_{\theta}(\mathbf{x}+t_{n+1}\mathbf{z},t_{n+1}),\mathbf{f}_{\theta^-}(\mathbf{x}+t_n\mathbf{z},t_n))$ $\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}(\theta, \theta^{-})$ $\theta^- \leftarrow \operatorname{stopgrad}(\mu(k)\theta^- + (1 - \mu(k))\theta)$ $k \leftarrow k + 1$ until convergence

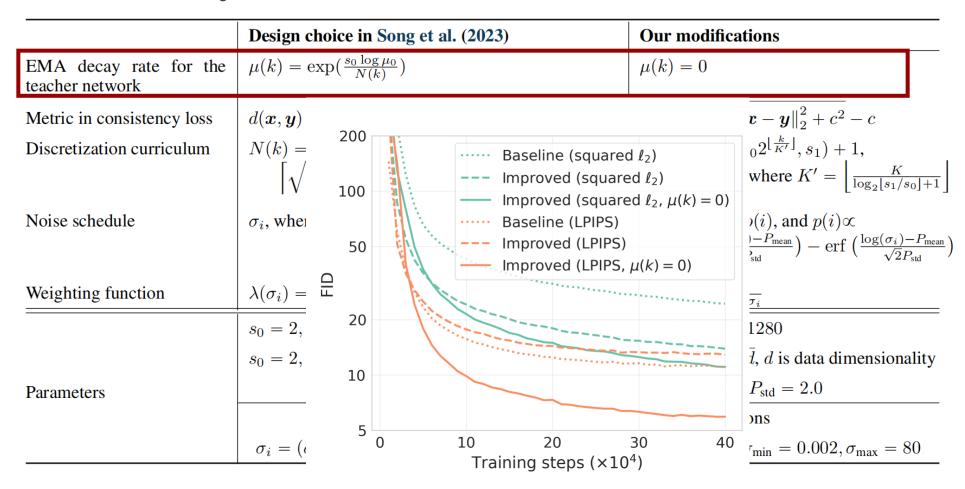
Isolation.

One-step (CIFAR-10 FID 8.70)

Two-step (CIFAR-10 FID 5.83)

Rely on LPIPS

	Design choice in Song et al. (2023)	Our modifications	
EMA decay rate for the teacher network	$\mu(k) = \exp(\frac{s_0 \log \mu_0}{N(k)})$	$\mu(k) = 0$	
Metric in consistency loss	$d(\boldsymbol{x}, \boldsymbol{y}) = \text{LPIPS}(\boldsymbol{x}, \boldsymbol{y})$	$d(x, y) = \sqrt{\ x - y\ _{2}^{2} + c^{2}} - c$	
Discretization curriculum	$N(k) = \left[\sqrt{\frac{k}{K}((s_1+1)^2 - s_0^2) + s_0^2} - 1 \right] + 1$	$N(k) = \min(s_0 2^{\left\lfloor \frac{k}{K'} \right\rfloor}, s_1) + 1,$ where $K' = \left\lfloor \frac{K}{\log_2 \left\lfloor s_1 / s_0 \right\rfloor + 1} \right\rfloor$	
Noise schedule	σ_i , where $i \sim \mathcal{U}[\![1,N(k)-1]\!]$	$ \left \begin{array}{l} \sigma_i, \text{ where } i \sim p(i), \text{ and } p(i) \propto \\ \operatorname{erf} \left(\frac{\log(\sigma_{i+1}) - P_{\operatorname{mean}}}{\sqrt{2}P_{\operatorname{std}}} \right) - \operatorname{erf} \left(\frac{\log(\sigma_i) - P_{\operatorname{mean}}}{\sqrt{2}P_{\operatorname{std}}} \right) \end{aligned} \right $	
Weighting function	$\lambda(\sigma_i) = 1$	$\lambda(\sigma_i) = \frac{1}{\sigma_{i+1} - \sigma_i}$	
	$s_0 = 2, s_1 = 150, \mu_0 = 0.9$ on CIFAR-10	$s_0 = 10, s_1 = 1280$	
	$s_0 = 2, s_1 = 200, \mu_0 = 0.95$ on ImageNet 64×64	$c = 0.00054\sqrt{d}$, d is data dimensionality	
Parameters		$P_{\text{mean}} = -1.1, P_{\text{std}} = 2.0$	
	$k \in [0, K]$, where K is the total training iterations		
	$\sigma_i = (\sigma_{\min}^{1/\rho} + \frac{i-1}{N(k)-1}(\sigma_{\max}^{1/\rho} - \sigma_{\min}^{1/\rho}))^{\rho}, \text{ where } i \in [1]$	$[N(k)], \rho = 7, \sigma_{\min} = 0.002, \sigma_{\max} = 80$	



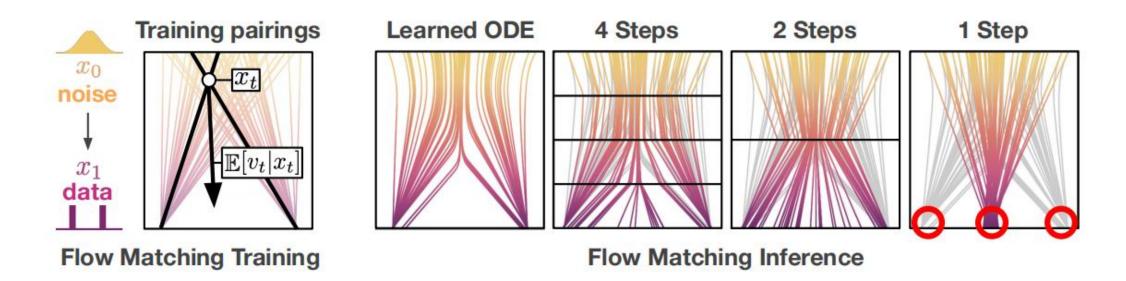
	Design choice in Song et al. (2023)	Our modifications	
EMA decay rate for the teacher network	$\mu(k) = \exp(\frac{s_0 \log \mu_0}{N(k)})$	$\mu(k) = 0$	
Metric in consistency loss	$d(\boldsymbol{x}, \boldsymbol{y}) = \text{LPIPS}(\boldsymbol{x}, \boldsymbol{y})$	$d(x, y) = \sqrt{\ x - y\ _{2}^{2} + c^{2}} - c$	
Discretization curriculum	$N(k) = \left[\sqrt{\frac{k}{K}((s_1+1)^2 - s_0^2) + s_0^2} - 1 \right] + 1$	$N(k) = \min(s_0 2^{\lfloor \frac{k}{K'} \rfloor}, s_1) + 1,$ where $K' = \lfloor \frac{K}{\log_2 \lfloor s_1/s_0 \rfloor + 1} \rfloor$	
Noise schedule	σ_i , where $i \sim \mathcal{U}[\![1,N(k)-1]\!]$		
Weighting function	$\lambda(\sigma_i) = 1$	$\lambda(\sigma_i) = \frac{1}{\sigma_{i+1} - \sigma_i}$	
	$s_0 = 2, s_1 = 150, \mu_0 = 0.9$ on CIFAR-10	$s_0 = 10, s_1 = 1280$	
	$s_0 = 2, s_1 = 200, \mu_0 = 0.95$ on ImageNet 64×64	$c = 0.00054\sqrt{d}$, d is data dimensionality	
Parameters		$P_{\text{mean}} = -1.1, P_{\text{std}} = 2.0$	
	$k \in [0, K]$, where K is the total training iterations		
	$\sigma_i = (\sigma_{\min}^{1/\rho} + \frac{i-1}{N(k)-1}(\sigma_{\max}^{1/\rho} - \sigma_{\min}^{1/\rho}))^{\rho}, \text{ where } i \in [1]$	$N(k)$, $\rho = 7$, $\sigma_{\min} = 0.002$, $\sigma_{\max} = 80$	

METHOD	NFE (\lambda)	FID (↓)	IS (†)
Fast samplers & distillation for diffusion models			
DDIM (Song et al., 2020)	10	13.36	
DPM-solver-fast (Lu et al., 2022)	10	4.70	
3-DEIS (Zhang & Chen, 2022)	10	4.17	
UniPC (Zhao et al., 2023)	10	3.87	
Knowledge Distillation (Luhman & Luhman, 2021)	1	9.36	
DFNO (LPIPS) (Zheng et al., 2022)	1	3.78	
2-Rectified Flow (+distill) (Liu et al., 2022)	1	4.85	9.01
TRACT (Berthelot et al., 2023)	1	3.78	
	2	3.32	
Diff-Instruct (Luo et al., 2023)	1	4.53	9.89
PD* (Salimans & Ho, 2022)	1	8.34	8.69
	2	5.58	9.05
CD (LPIPS) (Song et al., 2023)	1	3.55	9.48
	2	2.93	9.75
Direct Generation			
Score SDE (Song et al., 2021)	2000	2.38	9.83
Score SDE (deep) (Song et al., 2021)	2000	2.20	9.89
DDPM (Ho et al., 2020)	1000	3.17	9.46
LSGM (Vahdat et al., 2021)	147	2.10	
PFGM (Xu et al., 2022)	110	2.35	9.68
EDM* (Karras et al., 2022)	35	2.04	9.84
EDM-G++ (Kim et al., 2023)	35	1.77	
IGEBM (Du & Mordatch, 2019)	60	40.6	6.02
NVAE (Vahdat & Kautz, 2020)	1	23.5	7.18
Glow (Kingma & Dhariwal, 2018)	1	48.9	3.92
Residual Flow (Chen et al., 2019)	1	46.4	
BigGAN (Brock et al., 2019)	1	14.7	9.22
StyleGAN2 (Karras et al., 2020b)	1	8.32	9.21
StyleGAN2-ADA (Karras et al., 2020a)	1	2.92	9.83
CT (LPIPS) (Song et al., 2023)	1	8.70	8.49
	2	5.83	8.85
iCT (ours)	1	2.83	9.54
	2	2.46	9.80
iCT-deep (ours)	1	2.51	9.76
-	2	2.24	9.89

Shortcut Models

Reflow: Multi-stage, Few-step ambiguity problem

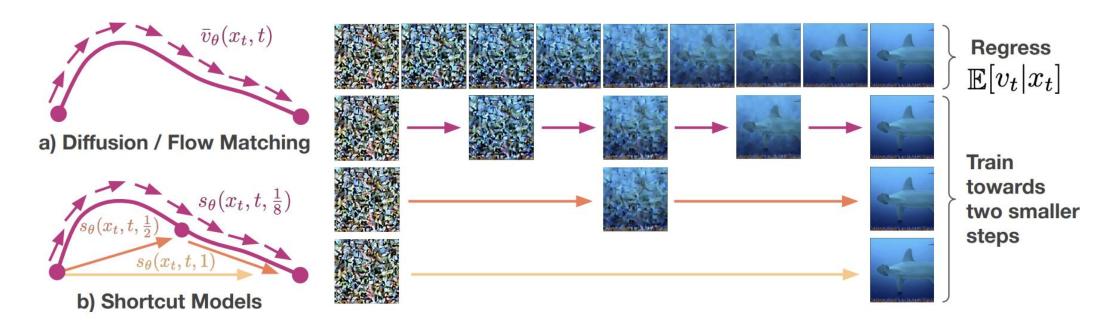
Consistency Model: Too many tricks, Hard to train



Shortcut Models

Conditioning the model not only on the timestep t but also on a desired step size d.

$$x'_{t+d} = x_t + s(x_t, t, d) d.$$



Frans K, Hafner D, Levine S, et al. One step diffusion via shortcut models. ICLR, 2025.

Shortcut Models

Conditioning the model not only on the timestep t but also on a desired step size d. Split the batch into two fraction

d=0: the shortcut is equivalent to the flow.

d>0: one shortcut step equals two consecutive shortcut steps of half the size

$$\mathcal{L}^{\mathrm{S}}(\theta) = E_{x_0 \sim \mathcal{N}, \ x_1 \sim D, \ (t,d) \sim p(t,d)} \Big[\underbrace{ \left\| s_{\theta}(x_t,t,0) - (x_1 - x_0) \right\|^2}_{\text{Flow-Matching}} + \underbrace{ \left\| s_{\theta}(x_t,t,2d) - s_{\text{target}} \right\|^2}_{\text{Self-Consistency}} \Big],$$
 where $s_{\text{target}} = s_{\theta}(x_t,t,d)/2 + s_{\theta}(x'_{t+d},t,d)/2$ and $x'_{t+d} = x_t + s_{\theta}(x_t,t,d)d$.

Shortcut Models

Batch Mixing: 75% d=0 & 25% d>0

Weight Decay: 0.1

EMA version of s_t and s_{t+d}

No results on CIFAR-10 and ImageNet-64

PART 03

Method

Mean Flows

Flow Matching & Rectified Flow: Real Flow trajectories are always curved.

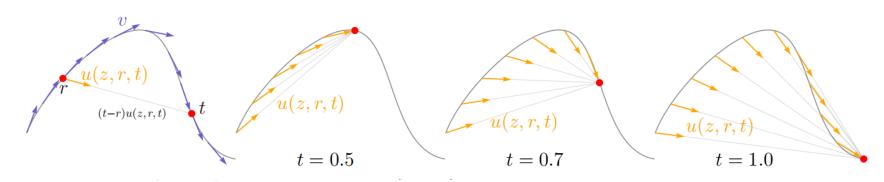
Integral difficulty: Neural networks are difficult to accurately learn a complex integral operator, for one-step generation.

Consistency Model: No solid theoretical foundation and training may be unstable.

Mean Flows

Average Velocity Field:

$$u(z_t, r, t) \triangleq \frac{1}{t - r} \int_r^t v(z_\tau, \tau) d\tau.$$



Relation between
$$u$$
 and v :
$$\underbrace{u(z_t,r,t)}_{\text{average vel.}} = \underbrace{v(z_t,t)}_{\text{instant. vel.}} - (t-r) \underbrace{\frac{d}{dt} u(z_t,r,t)}_{\text{time derivative}} \quad \text{(MeanFlow Identity)}$$

$$\frac{d}{dt}u(z_t,r,t) = \frac{dz_t}{dt}\partial_z u + \frac{dr}{dt}\partial_r u + \frac{dt}{dt}\partial_t u. \implies \frac{d}{dt}u(z_t,r,t) = v(z_t,t)\partial_z u + \partial_t u,$$

Mean Flows

Training with Average Velocity:

$$\mathcal{L}(\theta) = \mathbb{E} \left\| u_{\theta}(z_t, r, t) - \operatorname{sg}(u_{\text{tgt}}) \right\|_2^2,$$
where
$$u_{\text{tgt}} = v(z_t, t) - (t - r) \left(v(z_t, t) \partial_z u_{\theta} + \partial_t u_{\theta} \right),$$

Algorithm 1 MeanFlow: Training.

Note: in PyTorch and JAX, jvp returns the function output and JVP.

```
# fn(z, r, t): function to predict u
# x: training batch

t, r = sample_t_r()
e = randn_like(x)

z = (1 - t) * x + t * e
v = e - x

u, dudt = jvp(fn, (z, r, t), (v, 0, 1))

u_tgt = v - (t - r) * dudt
error = u - stopgrad(u_tgt)

loss = metric(error)
```

Algorithm 2 MeanFlow: 1-step Sampling

```
e = randn(x_shape)
x = e - fn(e, r=0, t=1)
```


Mean Flows

Mean Flows with Guidance:

New Ground-truth Field: $v^{\text{cfg}}(z_t, t \mid \mathbf{c}) \triangleq \omega v(z_t, t \mid \mathbf{c}) + (1 - \omega) v(z_t, t),$

New Average Velocity: $u^{\text{cfg}}(z_t, r, t \mid \mathbf{c}) = v^{\text{cfg}}(z_t, t \mid \mathbf{c}) - (t - r) \frac{d}{dt} u^{\text{cfg}}(z_t, r, t \mid \mathbf{c}).$

Training with Guidance: $\mathcal{L}(\theta) = \mathbb{E} \left\| u_{\theta}^{\text{cfg}}(z_t, r, t \mid \mathbf{c}) - \text{sg}(u_{\text{tgt}}) \right\|_2^2,$

where $u_{\text{tgt}} = \tilde{v}_t - (t - r) (\tilde{v}_t \partial_z u_{\theta}^{\text{cfg}} + \partial_t u_{\theta}^{\text{cfg}}).$

PART 04

Experiments

ImageNet generation at 256×256 resolution (A latent space of 32×32×4), 1-NFE,
 On the latent space of a pre-trained VAE tokenizer.

Ablation:

% of $r\neq t$	FID, 1-NFE
0% (= FM)	328.91
25%	61.06
50%	63.14
100%	67.32

jvp tangent	FID, 1-NFE
(v, 0, 1)	61.06
(v, 0, 0)	268.06
(v, 1, 0)	329.22
(v,1,1)	137.96

pos. embed	FID, 1-NFE
(t,r)	61.75
(t, t-r)	61.06
(t, r, t-r)	63.98
t-r only	63.13

(a) **Ratio of sampling** $r\neq t$. The 0% entry reduces to the standard Flow Matching baseline.

(b) **JVP computation**. The correct jvp tangent is (v, 0, 1) for Jacobian $(\partial_z u, \partial_r u, \partial_t u)$.

(c) **Positional embedding.** The network is conditioned on the embeddings applied to the specified variables.

t, r sampler	FID, 1-NFE
uniform(0, 1)	65.90
lognorm(-0.2, 1.0)	63.83
lognorm(-0.2, 1.2)	64.72
lognorm(-0.4, 1.0)	61.06
lognorm(-0.4, 1.2)	61.79

p	FID, 1-NFE
0.0	79.75
0.5	63.98
1.0	61.06
1.5	66.57
2.0	69.19

 ω
 FID, 1-NFE

 1.0 (w/o cfg)
 61.06

 1.5
 33.33

 2.0
 20.15

 3.0
 15.53

 5.0
 20.75

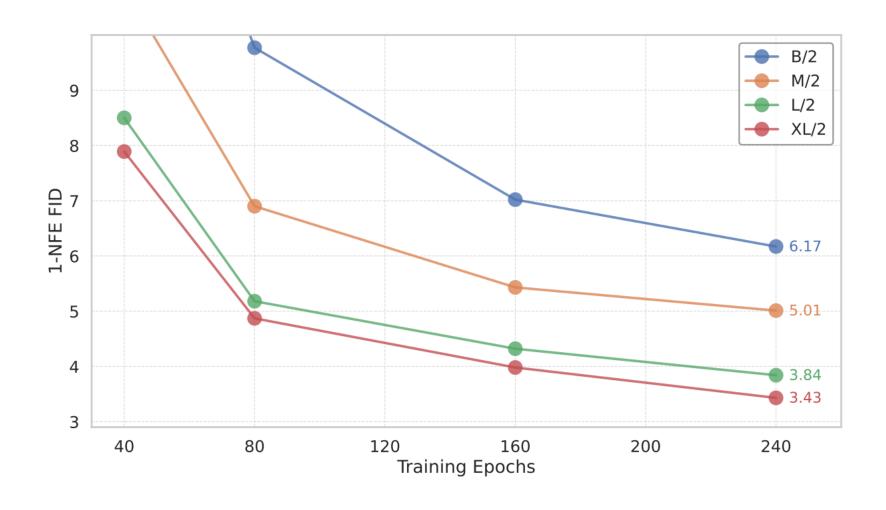
(d) **Time samplers.** t and r are sampled from the specific sampler.

(e) **Loss metrics.** p=0 is squared L2 loss. p=0.5 is Pseudo-Huber loss.

$$w = 1/(\|\Delta\|_2^2 + c)^p,$$

(f) **CFG scale:**. Our method supports 1-NFE CFG sampling.

• Scalability:



Comparisons with Prior Work:

method	params	NFE	FID	
1-NFE diffusion/flow from scratch				
iCT-XL/2 [43] [†]	675M	1	34.24	
Shortcut-XL/2 [13]	675M	1	10.60	
MeanFlow-B/2	131M	1	6.17	
MeanFlow-M/2	308M	1	5.01	
MeanFlow-L/2	459M	1	3.84	
MeanFlow-XL/2	676M	1	3.43	
2-NFE diffusion/flow from scratch				
iCT-XL/2 [43] [†]	675M	2	20.30	
iMM-XL/2 [52]	675M	1×2	7.77	
MeanFlow-XL/2	676M	2	2.93	
MeanFlow-XL/2+	676M	2	2.20	

method	params	NFE	FID
GANs			
BigGAN [5]	112M	1	6.95
GigaGAN [21]	569M	1	3.45
StyleGAN-XL [40]	166M	1	2.30
autoregressive/maskin	g		
AR w/ VQGAN [10]	227M	1024	26.52
MaskGIT [6]	227M	8	6.18
VAR-d30 [47]	2B	10×2	1.92
MAR-H [27]	943M	256×2	1.55
diffusion/flow			
ADM [8]	554M	250×2	10.94
LDM-4-G [37]	400M	250×2	3.60
SimDiff [20]	2B	512×2	2.77
DiT-XL/2 [34]	675M	250×2	2.27
SiT-XL/2 [33]	675M	250×2	2.06
SiT-XL/2+REPA [51]	675M	250×2	1.42

Comparisons with Prior Work:

method	precond	NFE	FID
iCT [43]	EDM	1	2.83
ECT [15]	EDM	1	3.60
sCT [31]	EDM	1	2.97
IMM [52]	EDM	1	3.20
MeanFlow	none	1	2.92

Table 3: Unconditional CIFAR-10.

1-NFE Generation Results

Conclusions

 Proposes modeling average velocity instead of instantaneous velocity for generative flows, enabling direct prediction of endpoint displacement in one step.

• Establishes a mathematical link between average and instantaneous velocities via a differential relation, eliminating need for integral computations during training.

 Demonstrates 3.43 FID on ImageNet 256×256 with true 1-NFE sampling, narrowing the gap between one-step and multi-step diffusion models.

Thanks for Listening!