TokenVerse: Versatile Multi-concept Personalization in Token Modulation Space

Daniel Garibi*, Shahar Yadin*, Roni Paiss, Omer Tov, Shiran Zada, Ariel Ephrat, Tomer Michaeli, Inbar Mosseri, Tali Dekel

Google DeepMind

SIGGRAPH 2025 best paper

STRUCT Group Seminar

Presenter: Yifan Li

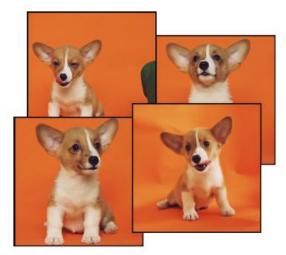
2025.7.7

Outline

- Background
- Method
- Experiments
- Conclusion

Background: Problem Definition

- Unconditional Generation: lack of controllability
- Text-to-image Generation: lack of flexible personalization
- Customized Generation
 - Given personalized condition as input



Input images

in the Acropolis

in a doghouse

in a bucket getting a haircut

Background: Problem Definition

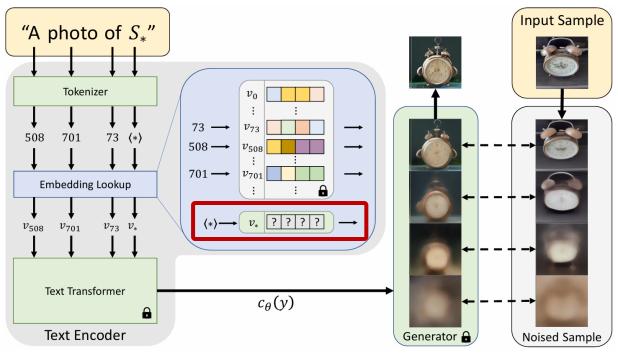
- How to leverage T2I models during personalization?
- Customized Generation based on T2I models
 - Optimize text embeddings
 - Textual Inversion [ICLR'23]
 - Finetune generative model
 - DreamBooth [CVPR'23]

Background: Textual Inversion

Optimize text embeddings

• Establish the correspondence between special text feature v_* and image

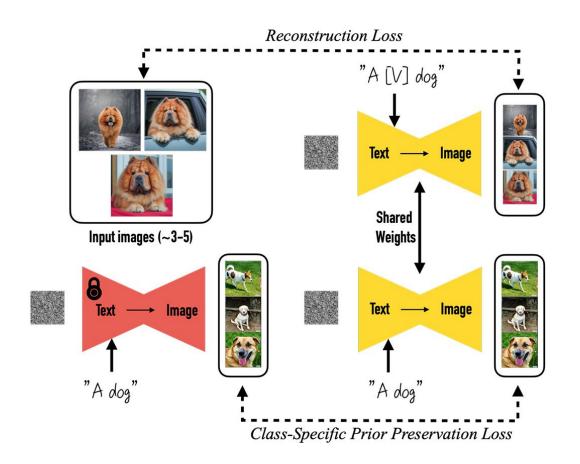
$$v_* = \arg\min_{v} \mathbb{E}_{z \sim \mathcal{E}(x), y, \epsilon \sim \mathcal{N}(0,1), t} \left[\|\epsilon - \epsilon_{\theta}(z_t, t, c_{\theta}(y))\|_2^2 \right]$$



Rinon Gal, Yuval Alaluf, et al., "An image is worth one word: Personalizing text-to image generation using textual inversion". ICLR'23.

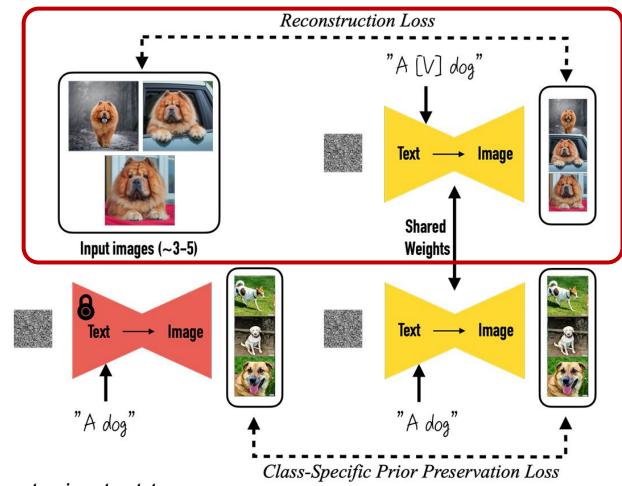
Finetune generative model

- Reconstruction: learn specific concept with a unique text token '[V]'
- Class-specific Prior Preservation: ensure normal generation ability



Reconstruction

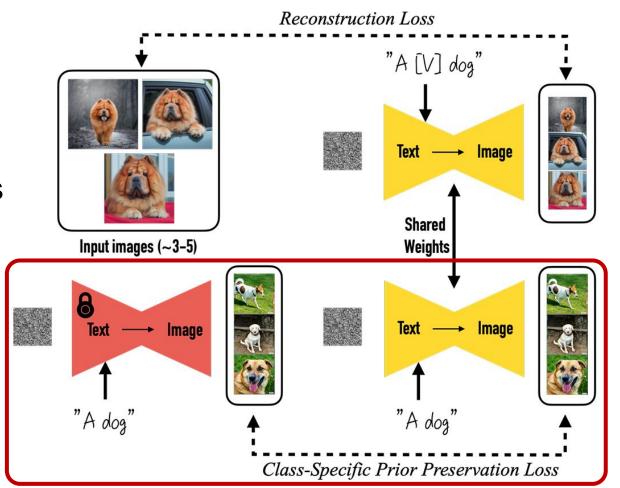
- Embed personal concept within a specific token '[V]'
- Finetune the whole T2I model (VAE & U-Net)
 - High computational cost
 (5 min on a A100, SD)



Nataniel Ruiz, Yuanzhen Li, et al., "Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation". CVPR'23.

Class-specific Prior Preservation

- Generate specific class-conditioned images as ground truth
- Avoid overfit to input concept images
- Encourage result diversity



DreamBooth achieve better results compared with Textual Inversion

DreamBooth (Stable Diffusion)

Textual Inversion (Stable Diffusion)

Input images

Conceptualize results

Background

Single-concept personalization

- Struggle to disentangle non-object concepts
- Struggle to disentangle multiple concepts within one image

Multi-concept personalization

- Object, accessories, materials, pose, lighting, ...
- Disentanglement of concepts
- Composition of concepts

Background

Multi-concept personalization

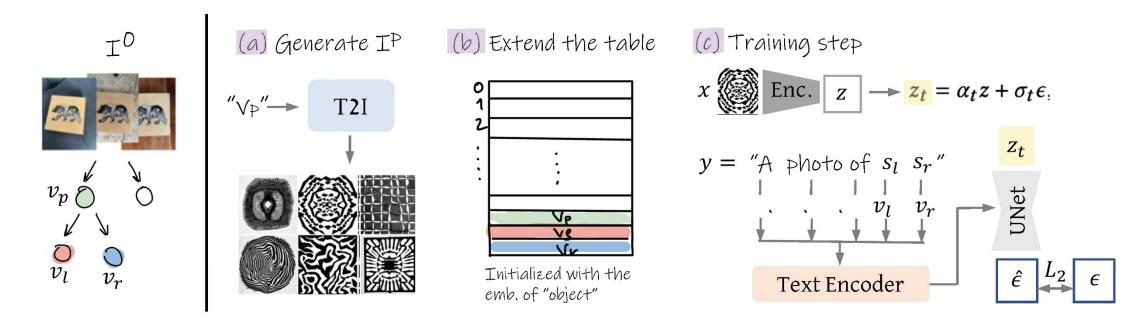
- Disentanglement of concepts
 - Inverse content back to text embeddings
 - Train a specific LoRA to overfit input images
- Composition of concepts
 - Replace original words with special text embeddings and corresponding spatial guidance (bbox or mask)
 - Fuse multiple LoRAs via optimization

Decompose concepts in a hierarchical tree structure

- Build binary tree from top to bottom
- Iteratively add two new nodes at a time

Main philosophy: Divide and conquer

- Divide pairs of child node to represent distinct concepts
- Maintain reasonable semantics in each nodes



Binary Reconstruction

 Each pair of children nodes together should encapsulate the concept depicted by their parent node

Enc.
$$z \longrightarrow z_t = \alpha_t z + \sigma_t \epsilon$$
, $y = \text{``A Photo of } s_l \ s_r \text{''}$

Text Encoder

$$\hat{\epsilon} \ L_2 \ \epsilon$$

$$\{v_l, v_r\} = \underset{v}{\operatorname{arg\,min}} \mathbb{E}_{z \sim \mathcal{E}(x), y, \epsilon \sim \mathcal{N}(0, 1), t} \left[\|\epsilon - \epsilon_{\theta}(z_t, t, c(y))\|_2^2 \right]$$

Coherency

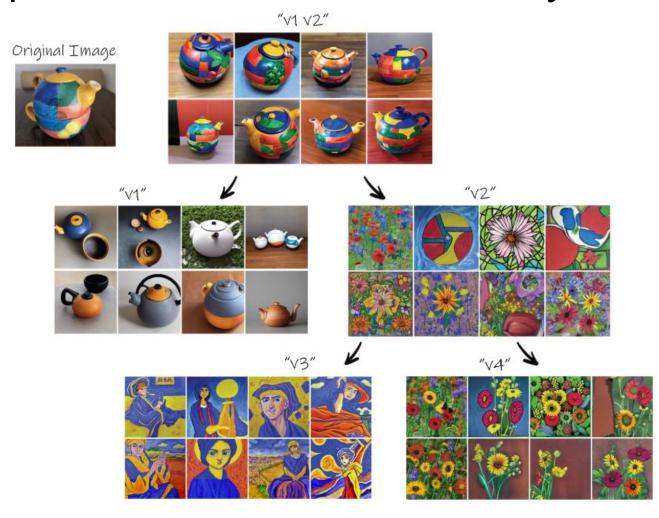
 Each individual node should depict a coherent concept which is distinct from its sibling

Coherency

- Each individual node should depict a coherent concept which is distinct from its sibling
- Formally, measure coherency by cosine similarity of CLIP image embeddings: $\mathcal{C}(I^a,I^b) = mean_{I^a_i \in I^a,I^b_j \in I^b,I^a_i \neq I^b_j}(sim(CLIP(I^a_i),CLIP(I^b_j)))$
- Maximize left/right child node intra-similarity
 Minimize left/right child node inter-similarity:

$$\{v_l^*, v_r^*\} = \underset{\{v_l^i, v_r^i\} \in V_s}{\arg\max} \left[C_l^i + C_r^i + (\min(C_l^i, C_r^i) - \mathcal{C}(I^{v_l^i}, I^{v_r^i})) \right]$$

Strong Representation Extraction Ability



Outline

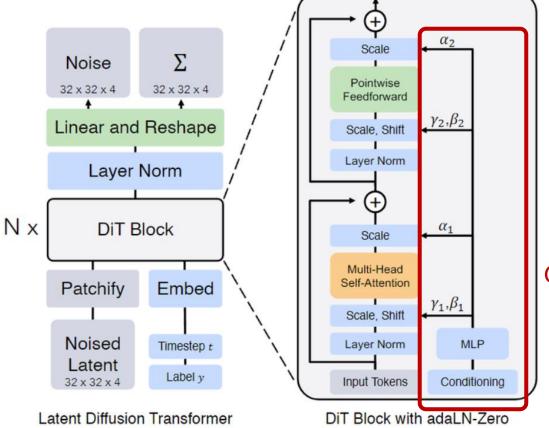
- Background
- Method
- Experiments
- Conclusion

Method: Preliminary

Diffusion Transformer (DiT)

Jointly processes text and image tokens with self-attention

Scalable arch.



Global condition guidance

Method: Preliminary

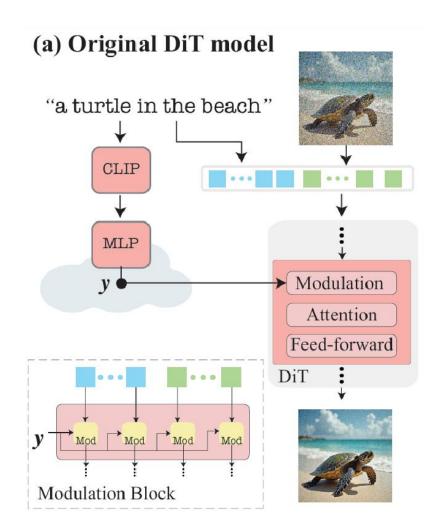
Modulation mechanism in DiT

 Merge timestep and pooled CLIP text embedding with MLP

$$y = MLP(t, CLIP(p))$$

 As a global modulation signal, y is then split to channel-wise scale and shift parameters

$$f_{mod} = Scale(y) \cdot f_{ori} + Shift(y)$$



Naïve Solution: modulate control signal on global-level

$$\Delta_{\text{attribute}} = \text{MLP}(t, e_{\text{attribute}}) - \text{MLP}(t, e_{\text{neutral}})$$
$$y = y + w\Delta_{\text{attribute}}$$

- $e_{neutral}$: pooled embedding of original description ('A dog')
- $e_{attribute}$: pooled embedding with some attribute added ('A poodle dog')

Naïve Solution: modulate control signal on global-level

Drawbacks: inaccurate control with non-local edit

Improved Solution: per-token modulation

street in New York City

Cat to Sphynx cat Dog to Poodle dog Ball to Baseball Pose to Tree pose Source Image (b) direction in \mathcal{M}^+ Space: A dog and a cat sitting on the A toy car and a A man doing a yoga

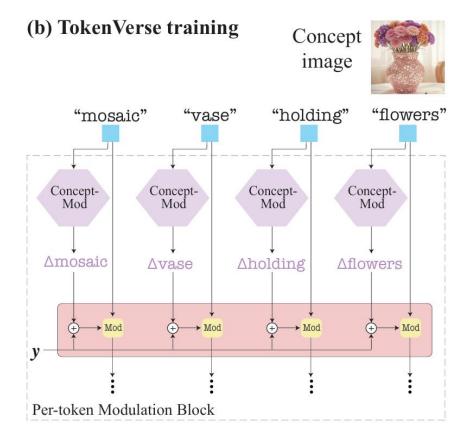
ball on the floor

pose in the park

23

Improved Solution: per-token modulation

Learns a modulation vector offset ∆ for each text token



Improved Solution: per-token modulation

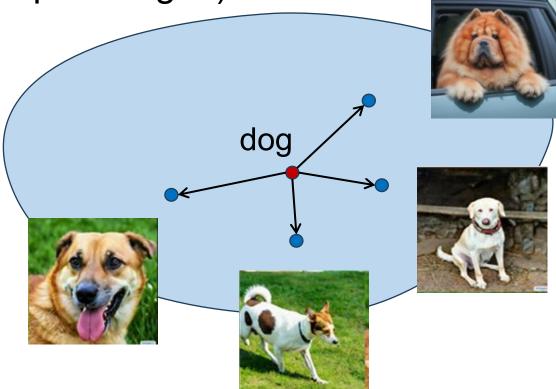
Combines each concept through learned per-token offsets



Improved Solution: per-token residual learning

Offset: transfer a generic concept to its customized version

(indicated by input images)



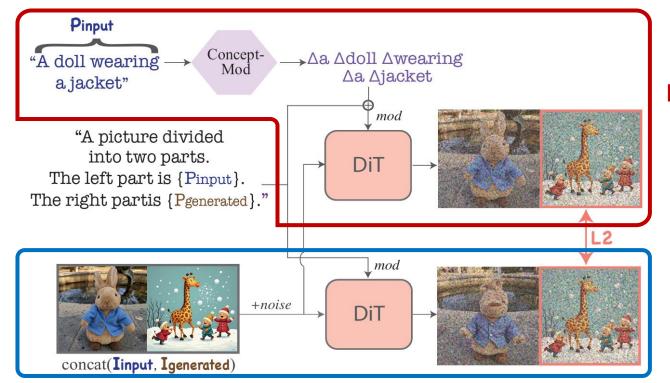
- Generic concept
- Cusomized concept
- → Learnable offset

Per-block optimization

- Coarse-to-fine training
 - Stage-1: high noise level (800~1000), aims at coarse concept alignment
 - Stage-2: refine directions with lower noise levels (0~800)
- Per-token, per-block
 - Train MLP that outputs a vector per transformer block
 - Instead of only adding offset on text tokens (which is equal to textual inversion)

Concept isolation loss

 steer the optimization such that the optimized directions do not affect concepts that do not appear in the concept image



Residual modulation generation

Outline

- Background
- Method
- Experiments
- Conclusion

Multiple object concepts disentanglement & composition

a dog wearing a shirt and necklace having a picnic

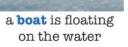
a **dog** wearing a **shirt**, **glasses** flying in the sky tied to balloons

a dog with a shirt, glasses on a rollercoaster

Multiple complex concepts disentanglement & composition

a doll wearing

ajacket



a light over paris

a doll on a boat made of mosaic

a **doll** surfing on a surfboard made of **mosaic** under a **light**

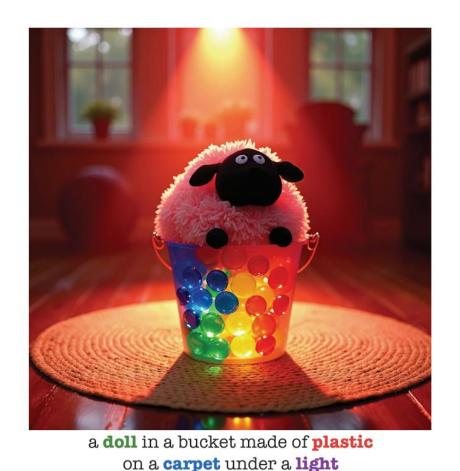
Multiple complex concepts disentanglement & composition

a doll riding rocking horse in a fog

a doll riding rocking horse in the garden

a **doll** on a **bench** in the park, **fog** around

Multiple complex concepts disentanglement & composition



33

Extreme multiple concepts personalization

Concept Images

a **man** leaning against a wall

a man wearing a **shirt**

a dog wearing a **hat** and a necklace

a cat wearing glasses and a shirt

a dog wearing a hat and a **necklace**

a **backpack** hanging on a chair

a doll sitting on a bench in the garden.

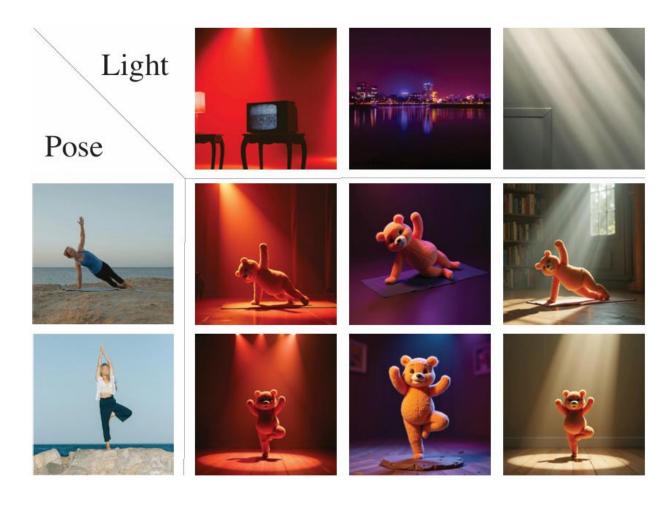
a mirror on a wall and a table

a woman standing in a **fog**

Generated Image

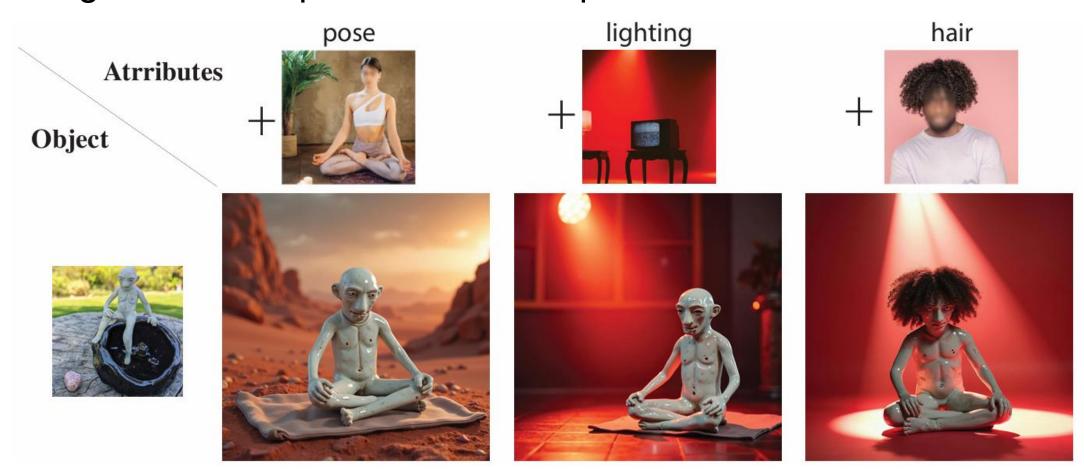
a man wearing shirt, hat, glasses, necklace holding a backpack, sitting on a bench near a table in front of a fog.

Concepts beyond objects (Background Relight)

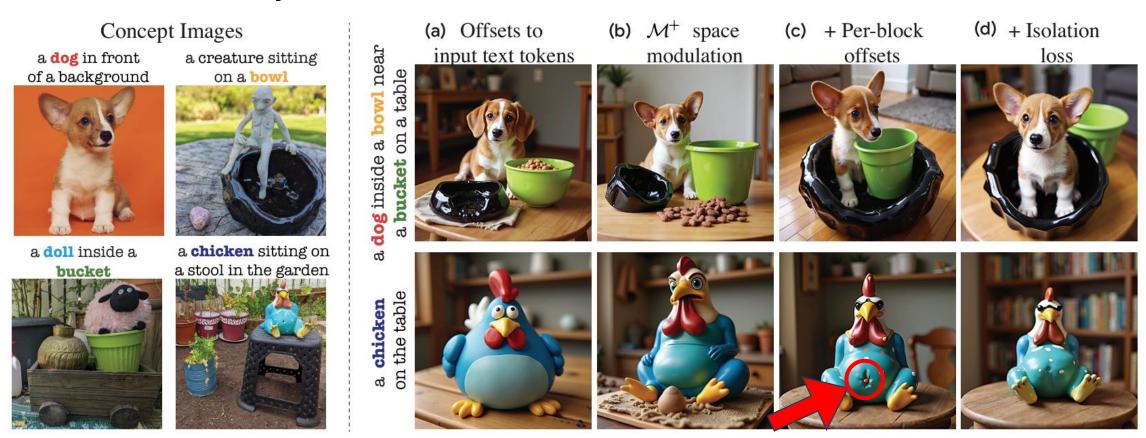


• Progressive composition of concepts

• Progressive composition of concepts



Ablation Study

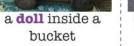


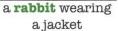
Experiments: Limitations

- Sensitive to initial caption
 - "sheep" → "doll" brings a huge difference

(a) Coliding captions

ajacket





a **sheep** inside a bucket

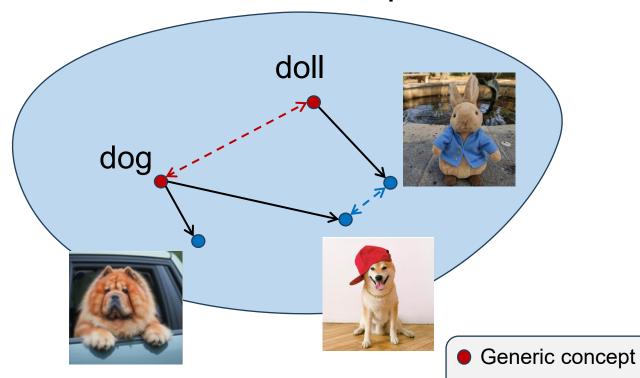
a **doll** on a table and a **doll** on a sofa

(b) With proper captions

a **rabbit** on a table and a **sheep** on a sofa

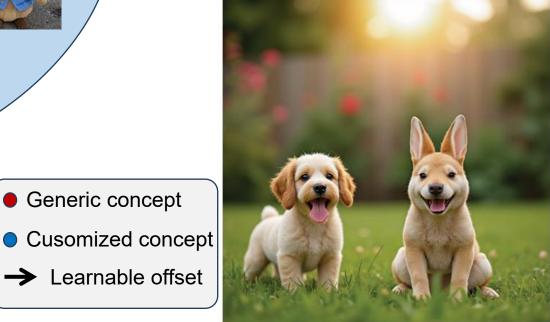
Experiments: Limitations

Hybrid results when concepts are similar



a dog wearing a hat and a necklace

a doll wearing ajacket



→ Learnable offset

Experiments: Limitation

- Optional Mitigation:
 - Joint training on both concepts

a **doll** wearing a jacket next to a **dog** wearing a hat and a necklace

Training

a doll and a dog in the garden

Inference

Outline

- Background
- Method
- Experiments
- Conclusion

Conclusion

- A versatile multiple complex concept generation method
- Insightful innovations based on DiT, which jointly process image and text tokens
- Fancy visualized results, rich application scenarios
- Fluent paper writing, complete experiment and limitation analysis

Thanks for listening!

Experiments: Details

- Backbone: Flux-dev, 58 DiT blocks, 3072 middle dimension
- Concept isolation loss: randomly sample from a fixed set of 25 pairs of captions and generated images