

# ConceptAttention: Diffusion Transformers Learn Highly Interpretable Features

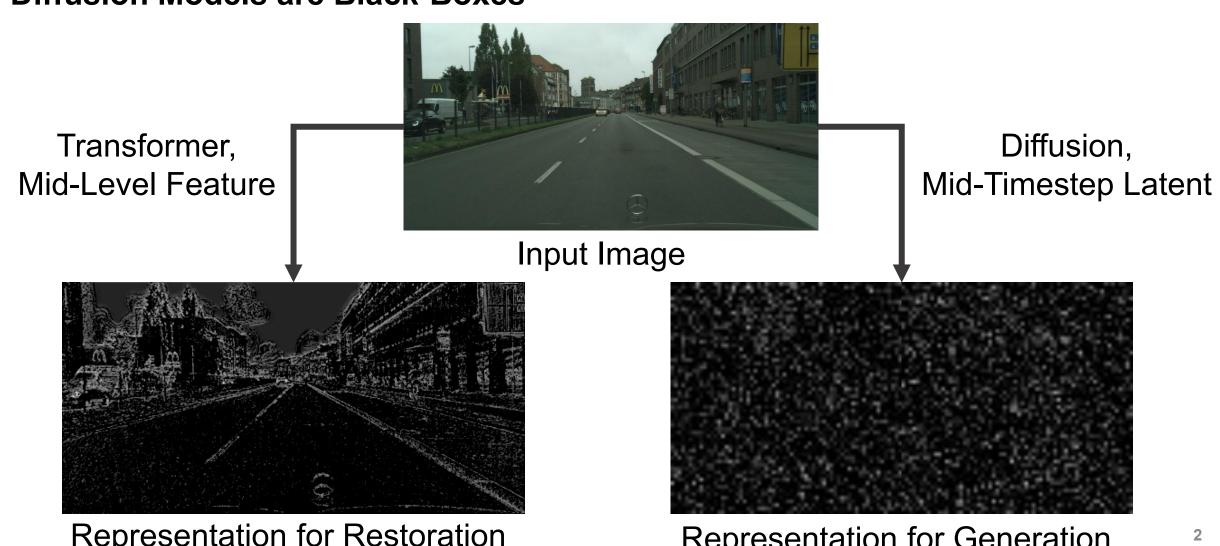
Alec Helbling Tuna Han Salih Meral Benjamin Hoover Pinar Yanardag Duen Horng (Polo) Chau Georgia Tech Virginia Tech IBM Research

ICML 2025 (Oral)

Presenter: Jinyi Luo 2025 07 28



#### **Diffusion Models are Black-Boxes**



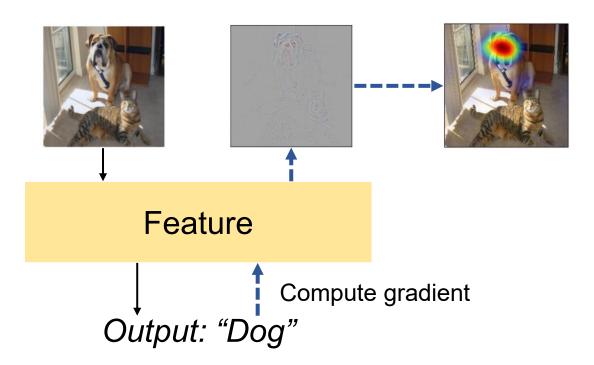
Representation for Restoration

Representation for Generation



## **Existing Vision Interpretation Methods**

## **Gradient Interpretation**

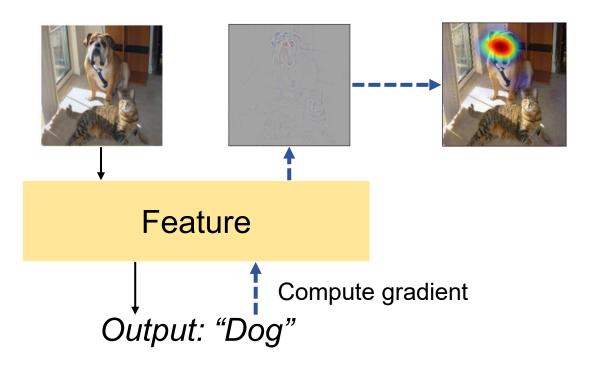


Hard to apply on generative models



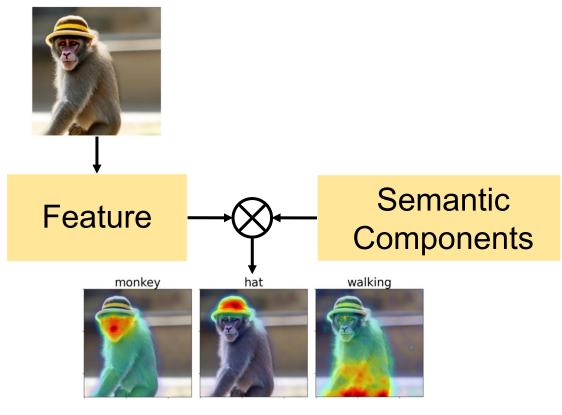
## **Existing Vision Interpretation Methods**

## **Gradient Interpretation**



Hard to apply on generative models

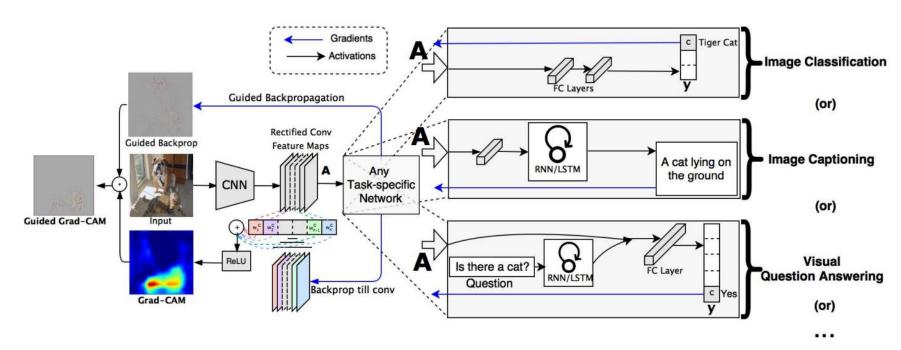
## Representation Interpretation



Requires model-specific design



## **Gradient-Based Interpretation**



global average pooling

$$\alpha_k^c = \underbrace{\frac{1}{Z} \sum_i \sum_j}_{\text{gradients via backprop}} \underbrace{\frac{\partial y^c}{\partial A_{ij}^k}}_{\text{Grad-CAM}} = ReLU \underbrace{\left(\sum_k \alpha_k^c A^k\right)}_{\text{linear combination}}$$



(a) Original Image

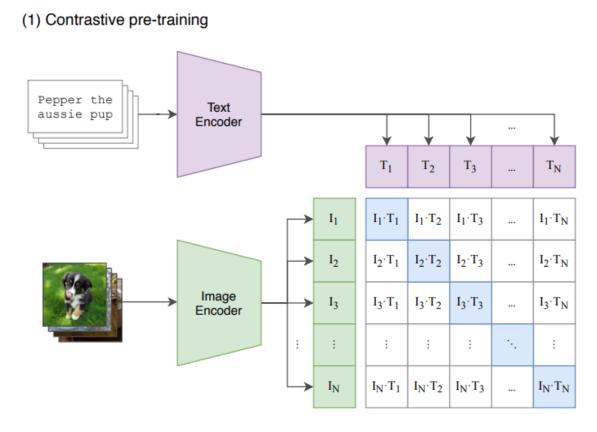


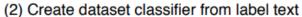
(c) Grad-CAM 'Cat'

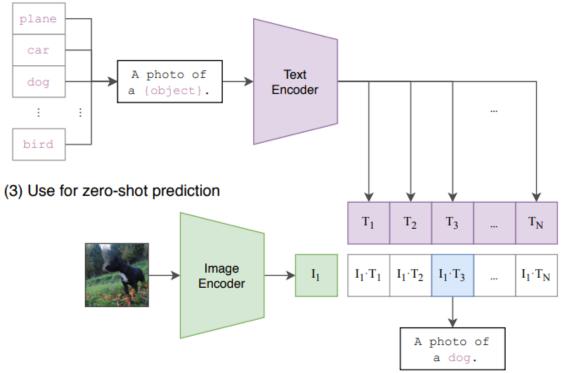


(i) Grad-CAM 'Dog'

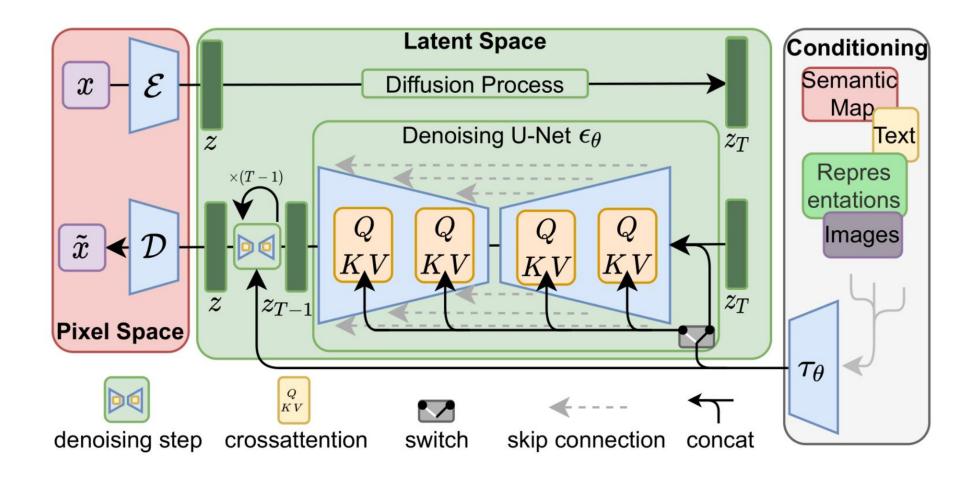






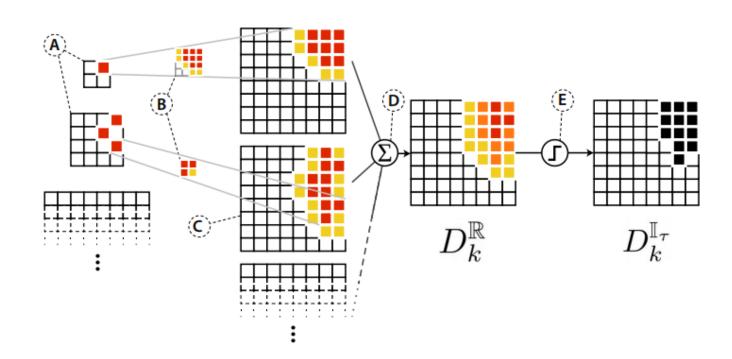


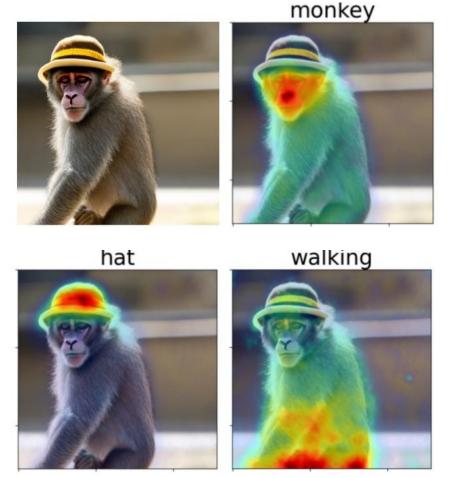






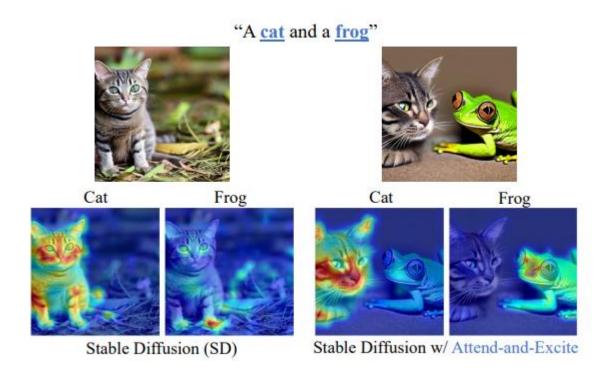
- Summing attention from multiple layers
- More fine-grained saliency maps

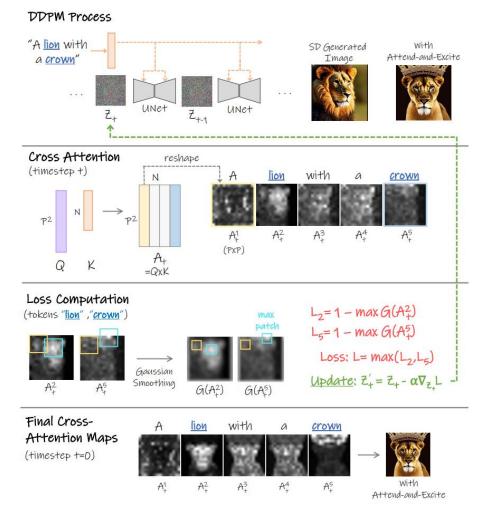






- Loss for Instance Enhancement
- More fine-grained saliency maps

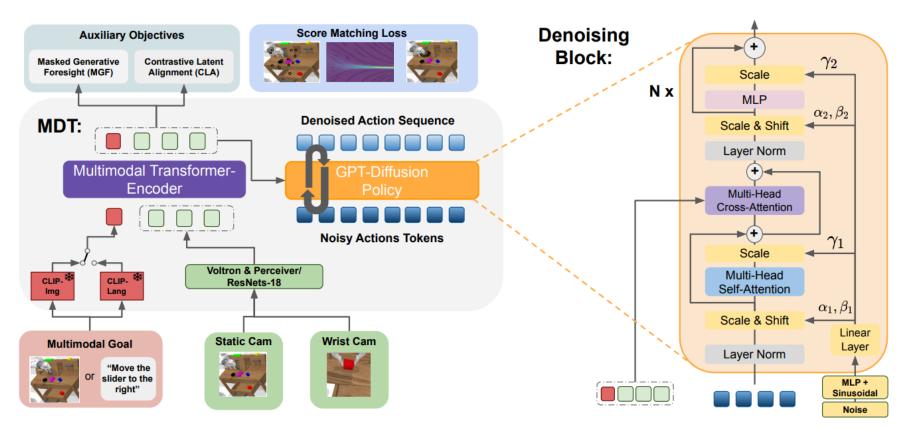






#### **Multi-Modal Diffusion Transformers**

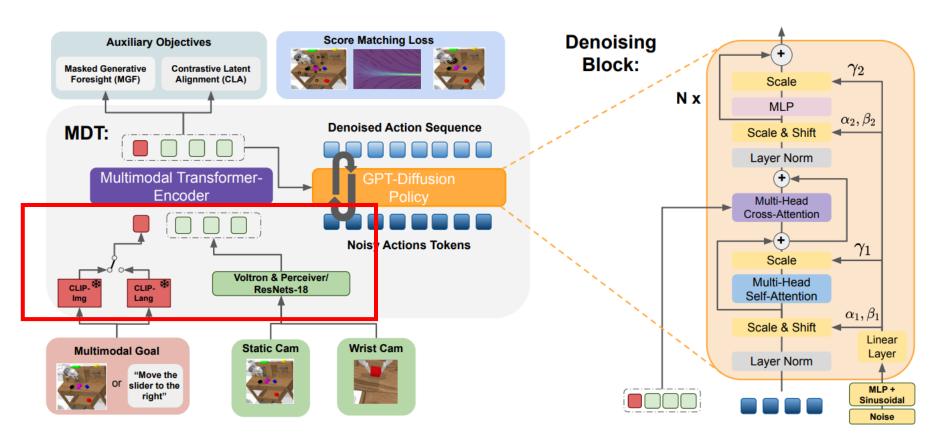
Uniform perspective of different modalities





#### **Multi-Modal Diffusion Transformers**

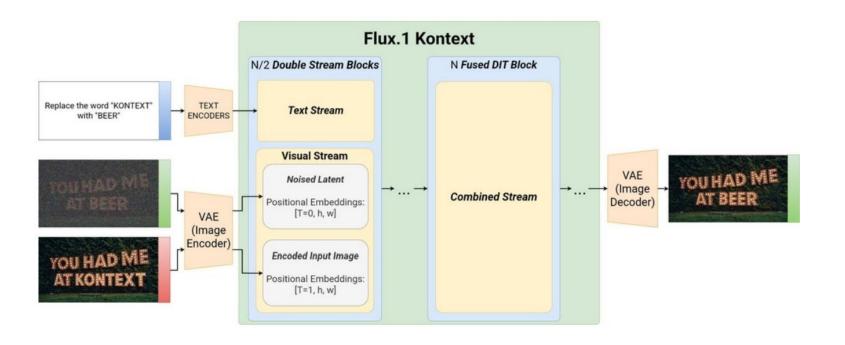
Uniform perspective of different modalities



- Concat modalities
- Self-Attention
- Text prompt
   embeddings are
   also updated



#### DiTs with MMAttn: FLUX, SD 3+, ...



SiLU Linear Linear Mod:  $\alpha_c \cdot \bullet + \beta_c$ Mod:  $\alpha_x \cdot \bullet + \beta_x$ Linear Attention Linear Linear Layernorm Mod:  $\delta_x \cdot \bullet + \epsilon_x$ MLP

Flux with both Double Stream Attention and Fused Self-Attention

Stable Diffusion 3 with Noise-Condition Fused Self-Attention



0.76

1.00

0.90

0.79

0.38

0.61

0.94

0.36

0.23

0.47

0.53

0.53

0.65

0.42

0.15

0.00

0.30

0.20

0.91

0.97

0.87

0.97

0.60

0.85

0.83

0.68

0.65

Layer 16

0.25

0.60

0.53

0.12

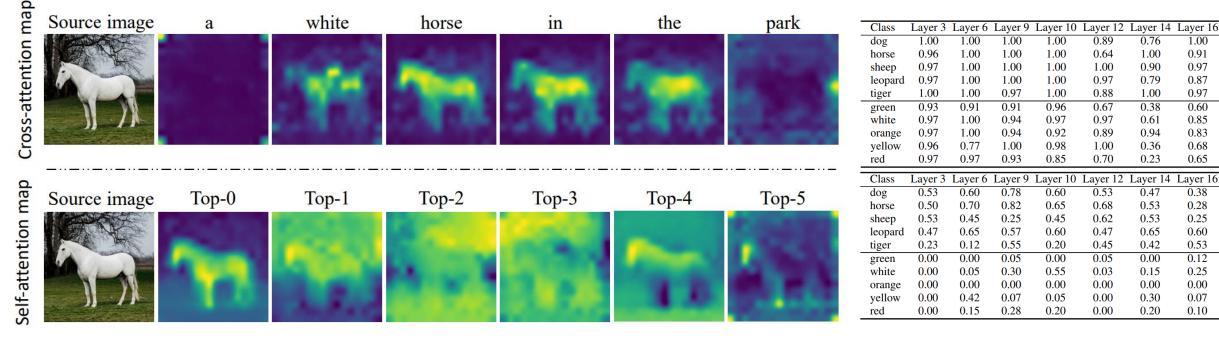
0.25

0.07

0.10

#### **Attention Functionalities in MMDiT**

- Semantic information from multi-modal cross-attention
- Geometric and shape details from self-attention



0.95

0.94

0.97

0.77

0.82

0.76

0.55

0.44

0.57

0.36

0.19

0.00

0.13

0.13

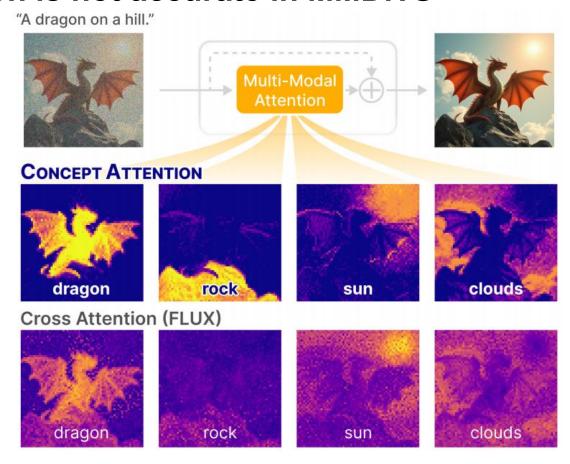


Attention in MMDiT contains rich semantic information as well.

How to interpret it and acquire accurate saliency map?



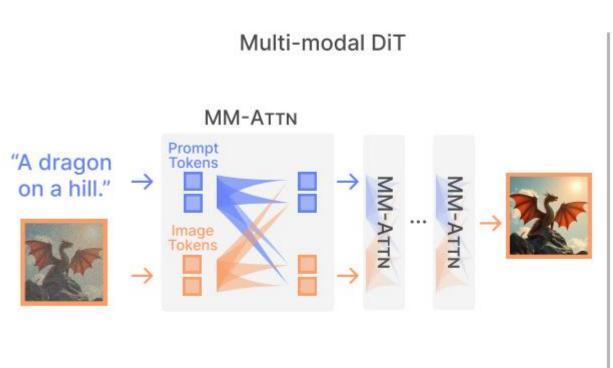
#### Raw Cross-Attention is not accurate in MMDiTS



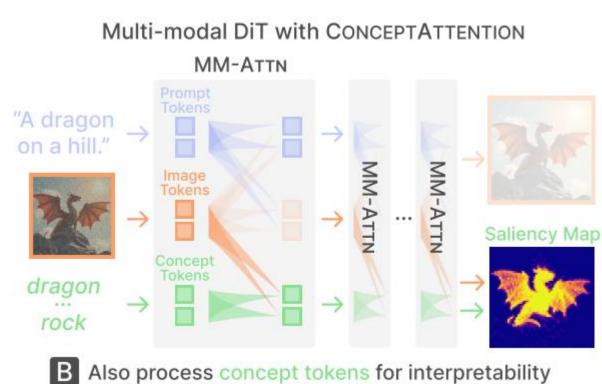
- The prompt domain is updated alongside image domain
- Fine semantic in deeper level cannot be accessed



## **Concept Residual Stream**

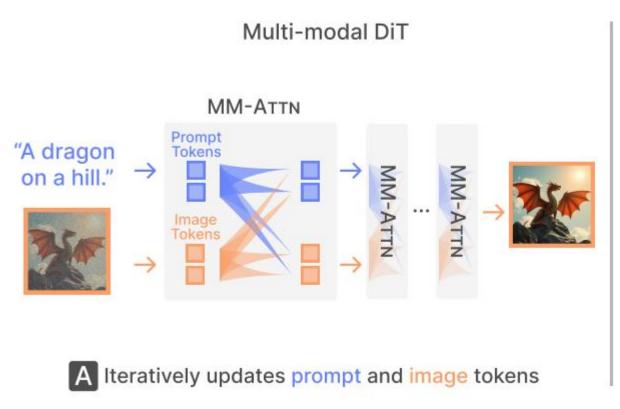


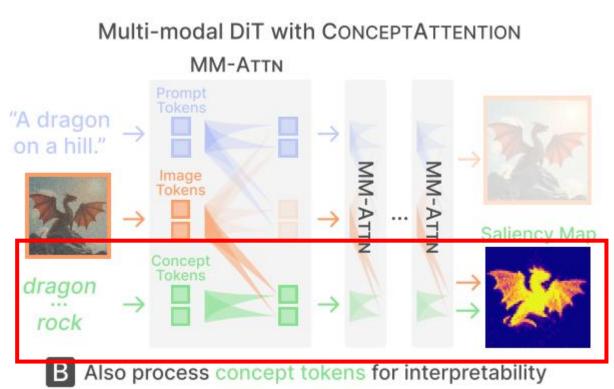
A Iteratively updates prompt and image tokens





## **Concept Residual Stream**





Concept tokens are updated through each layer, but does not interact generation

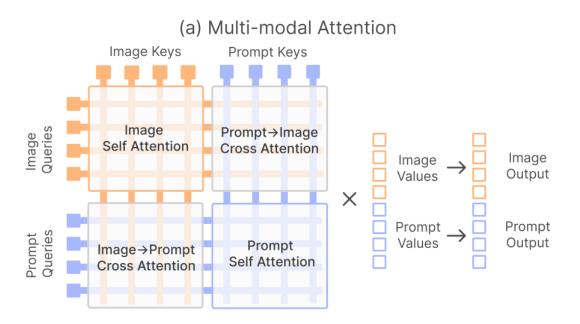


## **Single-Directional Concept Cross-Attention**

Multi-Modal Self-Attention:

$$k_{xp} = [K_x x_1, \dots, K_p p_1 \dots]$$

$$o_x, o_p = \operatorname{softmax}(q_{xp} k_{xp}^T) v_{xp}.$$





## **Single-Directional Concept Cross-Attention**

#### Multi-Modal Self-Attention:

$$k_{xp} = [K_x x_1, \dots, K_p p_1 \dots]$$

$$o_x, o_p = \operatorname{softmax}(q_{xp} k_{xp}^T) v_{xp}.$$

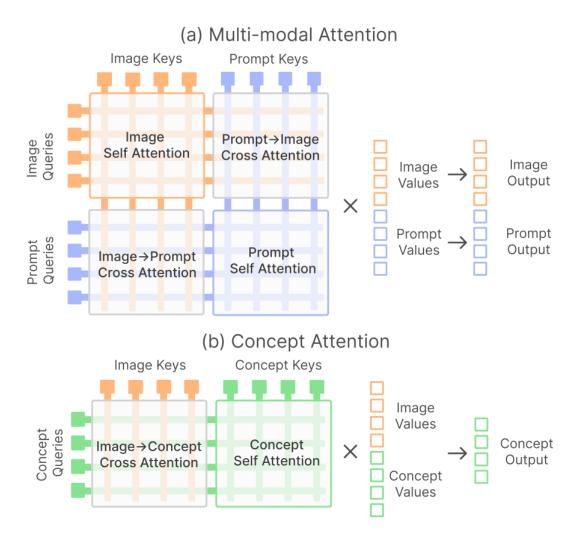
## Concept Cross-Attention:

$$q_c = [Q_p c_1, \dots]$$

$$k_{xc} = [K_x x_1, \dots, K_x x_n, K_p c_1, \dots, K_p c_r]$$

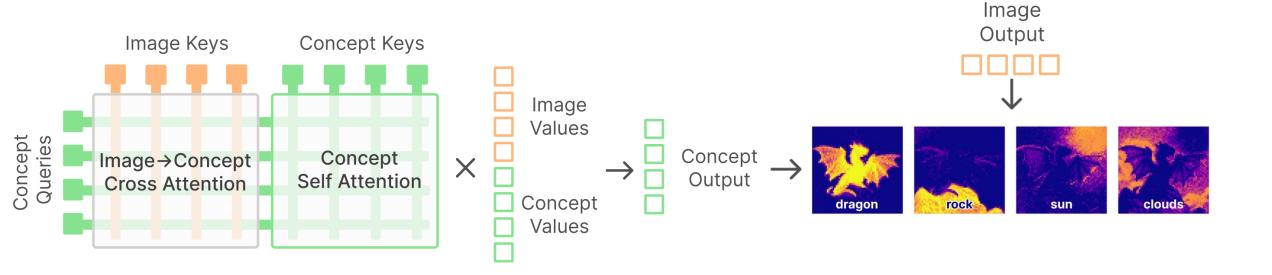
$$v_{xc} = [V_x x_1, \dots, V_x x_n, V_p c_1, \dots, V_p c_r]$$

$$o_c = \operatorname{softmax}(q_c k_{xc}^T) v_{xc}$$





## **Producing Saliency Map**



$$o_c = \operatorname{softmax}(q_c k_{xc}^T) v_{xc}$$
$$\phi(o_x, o_c) = \operatorname{softmax}(o_x o_c^T).$$



#### Pseudo-code

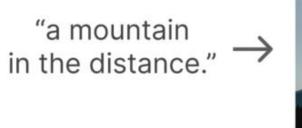
```
(a) Multi-Modal Attention
def multi modal attn(img, txt):
   # Compute the keys, queries, and values
   img_k, img_q, img_v = img_projection(img)
   txt_k, txt_q, txt_v = txt_projection(txt)
   # Concat the image and text keys, queries, and vals
   img txt_k = concat([img_k, txt_k])
   img txt q = concat([img q, txt q])
   img txt v = concat([img v, txt v])
   # Perform self attention on combined sequence
   attn_out = self_attention(img_txt_k, img_txt_q, img_txt_v)
   # Unpack the attention outputs
   img = attn out[:img.shape[0]], attn out[img.shape[0]:]
   return img, txt
```

#### (b) Multi-modal Attention with Concept Attention

```
+ def multi modal attn with concept attn(img, txt, concepts):
      # Compute the keys, gueries, and values
      img_k, img_q, img_v = img_projection(img)
      txt_k, txt_q, txt_v = txt_projection(txt)
      concept k, concept q, concept v = txt projection(concepts)
      # Concat the image and text keys, queries, and vals
      img_txt_k = concat([img_k, txt_k])
      img txt q = concat([img q, txt q])
      img txt v = concat([img v, txt v])
      # Perform self attention on combined sequence
      attn_out = self_attention(img_txt_k, img_txt_q, img_txt_v)
      # Unpack the attention outputs
      img, txt = attn_out[:img.shape[0]], attn_out[img.shape[0]:]
      # Concatenate the image and concept keys and values
      img concept k = concat([img k, concept k])
      img concept v = concat([img v, concept v])
     # Perform the concept attention
      concept_attn_map = matmul(concept_q, img_concept_k.T)
      concept attn map = softmax(concept attn map, axis=-1) * scale
      concepts = matmul(concept attn map, img concept v)
      return img, txt, concepts
```

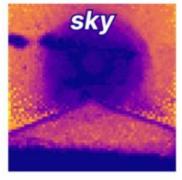


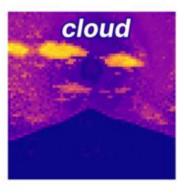
## **Produced Saliency Maps**









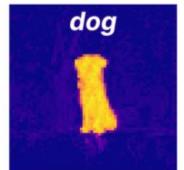




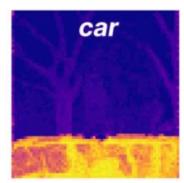






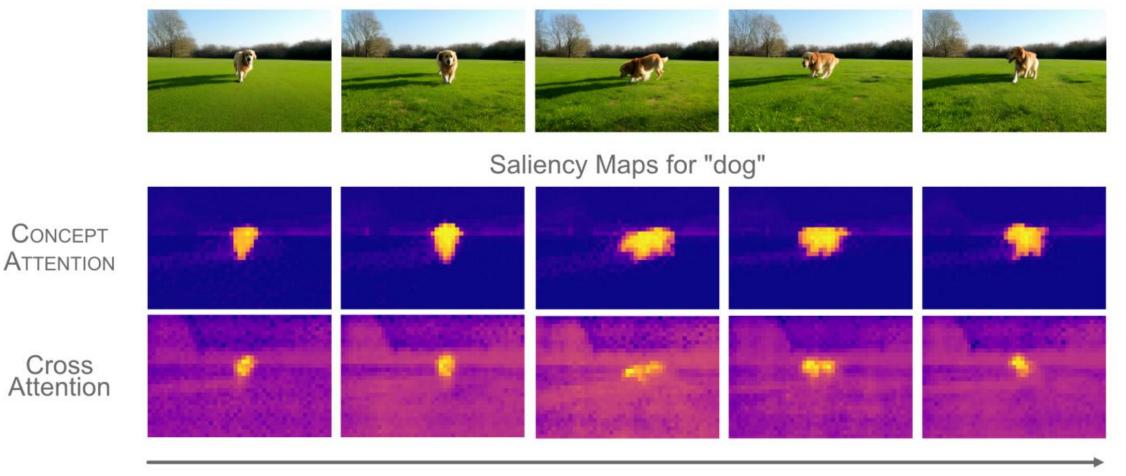








## **Comparison with Cross-Attention on Videos**





#### **Quantitative Benchmarks:**

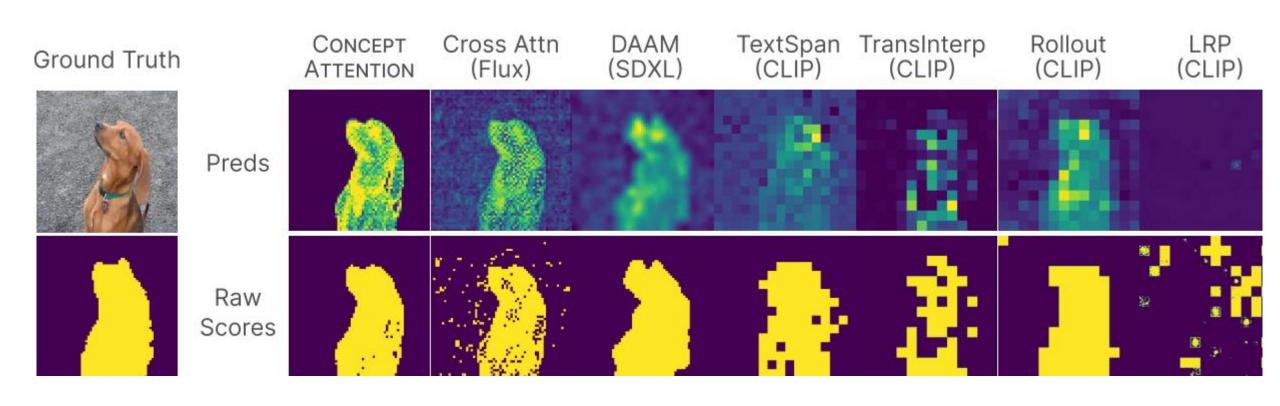
- Zero-shot semantic segmentation
- ImageNet-Segmentation & PascalVOC 2012

#### **Baselines:**

- Interpretation results on Transformer encoder features
- Attention and Interpretation on Unet-SDs
- Raw cross-attention in DiTs



## **Open Vocabulary Semantic Segmentation Result**



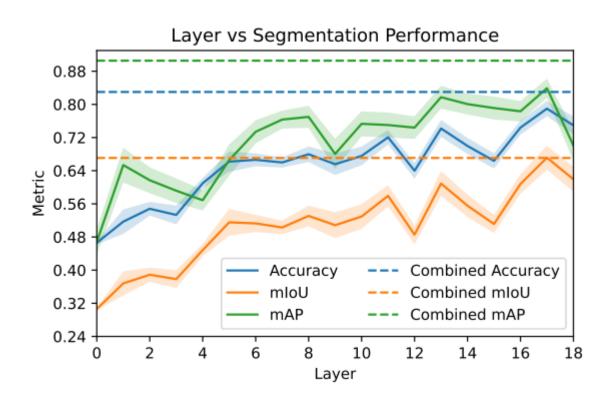


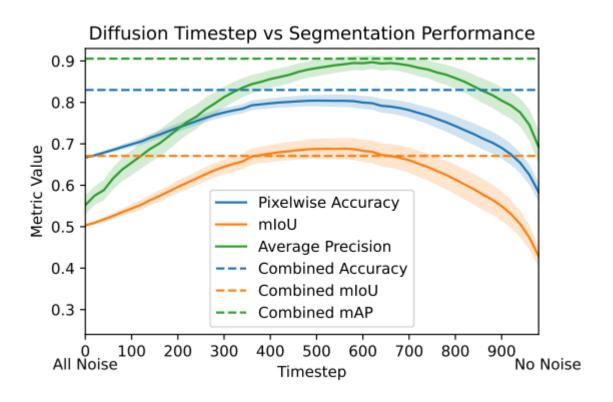
## **Zero-Shot Semantic Segmentation Performance**

|                                          |              | ImageNet-Segmentation |       | PascalVOC (Single Class) |       |       |       |
|------------------------------------------|--------------|-----------------------|-------|--------------------------|-------|-------|-------|
| Method                                   | Architecture | Acc↑                  | mIoU↑ | mAP↑                     | Acc ↑ | mIoU↑ | mAP↑  |
| LRP (Binder et al., 2016)                | CLIP ViT     | 51.09                 | 32.89 | 55.68                    | 48.77 | 31.44 | 52.89 |
| Partial-LRP (Binder et al., 2016)        | CLIP ViT     | 76.31                 | 57.94 | 84.67                    | 71.52 | 51.39 | 84.86 |
| Rollout (Abnar & Zuidema, 2020)          | CLIP ViT     | 73.54                 | 55.42 | 84.76                    | 69.81 | 51.26 | 85.34 |
| ViT Attention (Dosovitskiy et al., 2021) | CLIP ViT     | 67.84                 | 46.37 | 80.24                    | 68.51 | 44.81 | 83.63 |
| GradCAM (Selvaraju et al., 2020)         | CLIP ViT     | 64.44                 | 40.82 | 71.60                    | 70.44 | 44.90 | 76.80 |
| TextSpan (Gandelsman et al., 2024)       | CLIP ViT     | 75.21                 | 54.50 | 81.61                    | 75.00 | 56.24 | 84.79 |
| TransInterp (Chefer et al., 2021)        | CLIP ViT     | 79.70                 | 61.95 | 86.03                    | 76.90 | 57.08 | 86.74 |
| CLIPasRNN (Sun et al., 2024)             | CLIP ViT     | 74.05                 | 58.80 | 84.80                    | 61.76 | 41.48 | 76.57 |
| OVAM (Marcos-Manchón et al., 2024)       | SDXL UNet    | 79.41                 | 65.02 | 88.12                    | 73.50 | 58.12 | 87.91 |
| DINO SA (Caron et al., 2021)             | DINO ViT     | 81.97                 | 69.44 | 86.12                    | 80.71 | 64.33 | 88.90 |
| DINOv2 SA (Oquab et al., 2024)           | DINOv2 ViT   | 77.39                 | 63.12 | 84.19                    | 79.65 | 57.61 | 87.26 |
| DINOv2 Reg SA (Darcet et al., 2024)      | DINOv2 Reg   | 72.04                 | 56.31 | 80.83                    | 77.16 | 56.60 | 86.35 |
| iBOT SA (Zhou et al., 2022)              | iBOT ViT     | 76.34                 | 61.73 | 82.04                    | 74.96 | 55.80 | 85.26 |
| DAAM (Tang et al., 2022)                 | SDXL UNet    | 78.47                 | 64.56 | 88.79                    | 72.76 | 55.95 | 88.34 |
| DAAM (Tang et al., 2022)                 | SD2 UNet     | 64.52                 | 47.62 | 78.01                    | 64.28 | 45.01 | 83.04 |
| Cross Attention                          | Flux DiT     | 74.92                 | 59.90 | 87.23                    | 80.37 | 54.77 | 89.08 |
| Cross Attention                          | SD3.5 DiT    | 77.80                 | 63.67 | 83.50                    | 80.22 | 61.46 | 86.97 |
| CONCEPTATTENTION                         | SD3.5 DiT    | 81.92                 | 67.47 | 90.79                    | 83.90 | 69.93 | 90.02 |
| CONCEPTATTENTION                         | Flux DiT     | 83.07                 | 71.04 | 90.45                    | 87.85 | 76.45 | 90.19 |



## **Ablation on Different Layers and Timesteps**







## **Algorithm Ablations**

| Space  | Softmax      | Acc↑  | mIoU↑ | mAP↑  |
|--------|--------------|-------|-------|-------|
| CA     |              | 66.59 | 49.91 | 73.17 |
| CA     | $\checkmark$ | 74.92 | 59.90 | 87.23 |
| Value  |              | 45.93 | 29.81 | 65.79 |
| Value  | $\checkmark$ | 45.78 | 29.68 | 39.61 |
| Output |              | 78.75 | 64.95 | 88.39 |
| Output | $\checkmark$ | 83.07 | 71.04 | 90.45 |

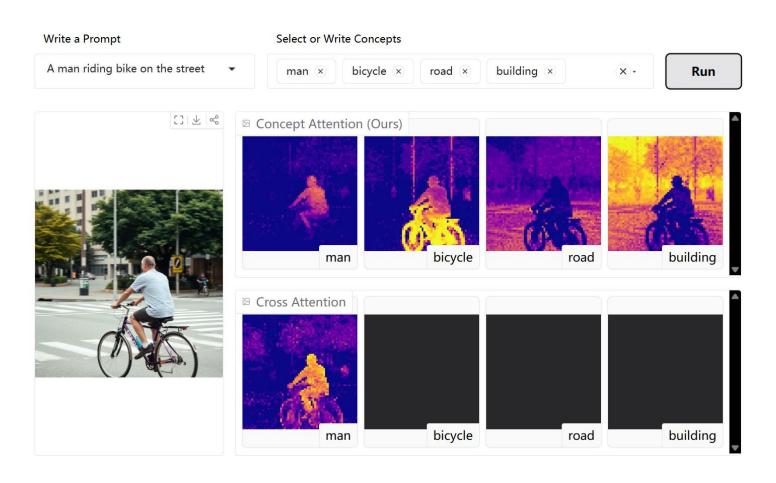
| CA           | SA           | Acc↑  | mIoU↑ | mAP↑  |
|--------------|--------------|-------|-------|-------|
|              |              | 52.63 | 35.72 | 70.21 |
|              | $\checkmark$ | 51.68 | 34.85 | 69.36 |
| $\checkmark$ |              | 76.51 | 61.96 | 86.73 |
| $\checkmark$ | $\checkmark$ | 83.07 | 71.04 | 90.45 |

Space to Obtain Saliency Map

**Concept Utilization** 



#### Demo





https://huggingface.co/spaces
/helblazer811/ConceptAttention/



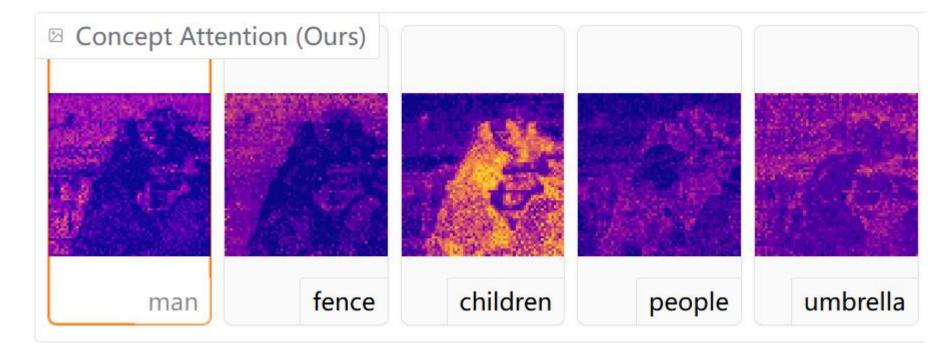
## **Demo**





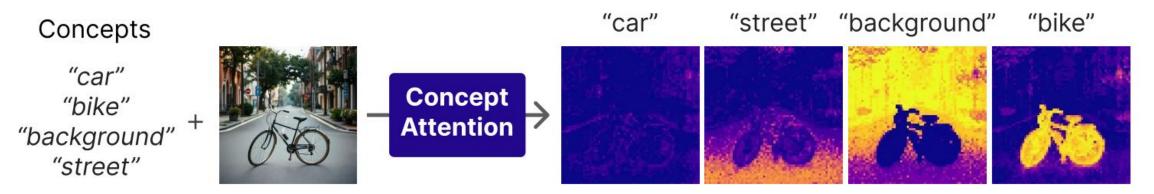
#### **Zero-Shot Low Resolution Results:**



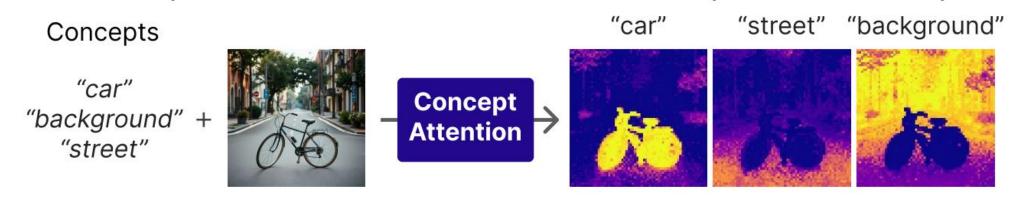




Correct concept "bike" chosen over similar concept "car" when both are given



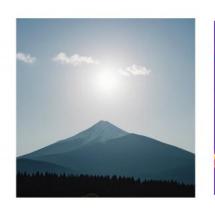
Closest concept "car" chosen when correct concept "bike" is not present

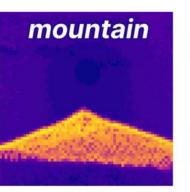


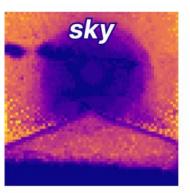


## **Cannot Deal with Overlapping Concepts:**

"a mountain in the distance."  $\rightarrow$ 











#### **Conclusion**



- Rich semantic representation in MM-DiT Attention
- A training-free approach to extract saliency maps
- Excels on open-vocabulary semantic segmentation
- Fails on LQ data domain



## Thanks for listening!

Presenter: Jinyi Luo

2025.07.28