STRUCT Group Paper Reading

Taming Flow-based I2V Models for Creative Video Editing

arXiv 2025

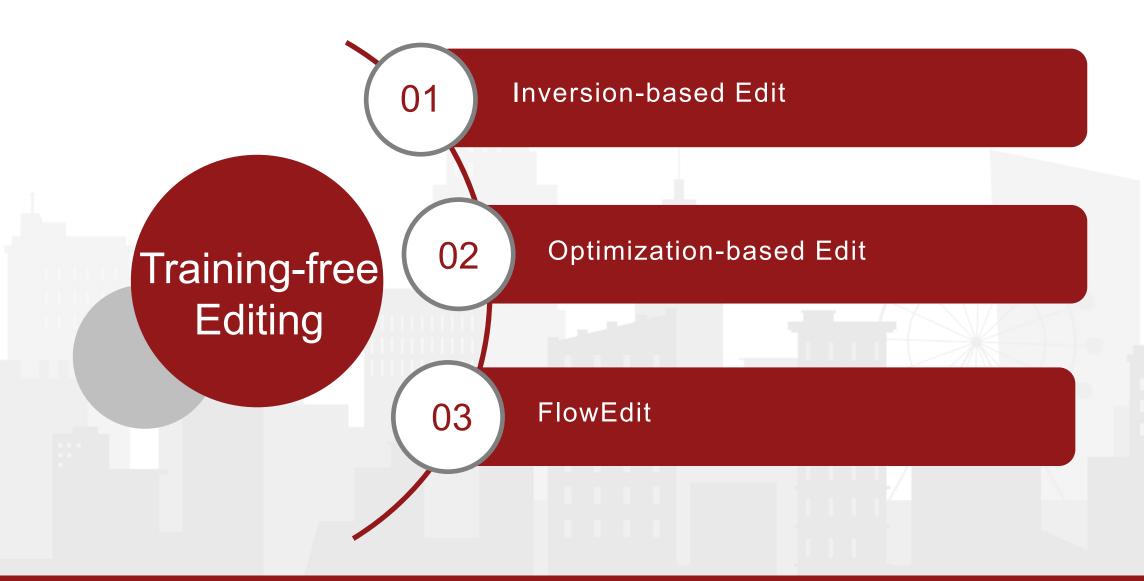
Xianghao Kong, Hansheng Chen, Yuwei Guo, Lvmin Zhang, Gordon Wetzstein, Maneesh Agrawala, Anyi Rao

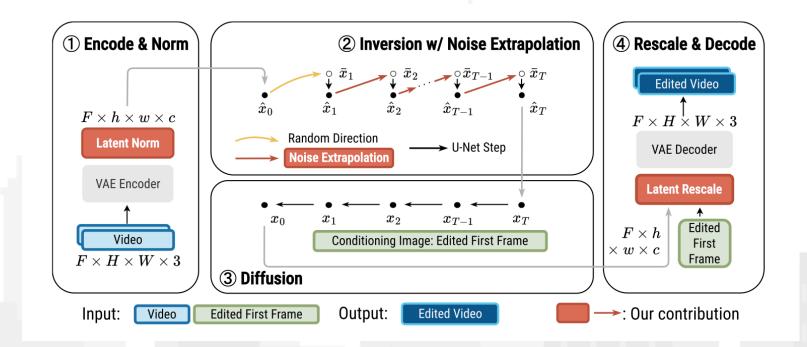
Presented by Junyi Fan 2025.11.23

Video Editing: Task Formulation

- Task formulation:
 - Input:
 - Source video with L frames: $x^{src} = \{x_i^{src}\}_{i=1sL}$
 - Edited first frame: x_i^{edit}
 - Output:
 - $x^{tar} = \{x_i^{tar}\}_{i=j\,s\,L}$ such that propagate the modifications along the temporal dimension while maintaining overall structure and motion consistency with the source video

Background: Traning-free Visual Editing





- a. Noise Extrapolation: to solve the inaccuracy of EDM inversion
- b. Latent Normalization and Rescaling

Xiang Fan, Anand Bhattad, and Ranjay Krishna. "Videoshop: Localized Semantic Video Editing with Noise-Extrapolated Diffusion Inversion", in Proc. ECCV, 2024.

a. Noise Extrapolation: to solve the inaccuracy of EDM inversion

- a. Noise Extrapolation: to solve the inaccuracy of EDM inversion
 - Inversion in EDM framework

- a. Noise Extrapolation: to solve the inaccuracy of EDM inversion
 - Inversion in EDM framework
 - Denoise step from $x_{tdi} \rightarrow x_t$

$$x_{t} = x_{t+1} + \underbrace{\frac{\sigma_{t} - \sigma_{t+1}}{\sigma_{t+1}} \left(x_{t+1} - \underbrace{\left(c_{\text{skip}}^{t+1} x_{t+1} + c_{\text{out}}^{t+1} F_{\theta} \left(c_{\text{in}}^{t+1} x_{t+1}; c_{\text{noise}}^{t+1} \right) \right)}_{\text{noise removed at step } t}$$
(3)

- a. Noise Extrapolation: to solve the inaccuracy of EDM inversion
 - Inversion in EDM framework
 - Denoise step from $x_{tdi} \rightarrow x_t$

$$x_{t} = x_{t+1} + \underbrace{\frac{\sigma_{t} - \sigma_{t+1}}{\sigma_{t+1}} \left(x_{t+1} - \underbrace{\left(c_{\text{skip}}^{t+1} x_{t+1} + c_{\text{out}}^{t+1} F_{\theta} \left(c_{\text{in}}^{t+1} x_{t+1}; c_{\text{noise}}^{t+1} \right) \right)}_{\text{noise removed at step } t}$$
(3)

- Rewrite to invert

$$\hat{x}_{t+1} = \frac{\sigma_{t+1}\hat{x}_t + (\sigma_t - \sigma_{t+1}) c_{\text{out}}^{t+1} F_{\theta} \left(c_{\text{in}}^{t+1} \hat{x}_{t+1}; c_{\text{noise}}^{t+1} \right)}{(\sigma_t - \sigma_{t+1}) \left(1 - c_{\text{skip}}^{t+1} \right) + \sigma_{t+1}}$$
(4

- a. Noise Extrapolation: to solve the inaccuracy of EDM inversion
 - Inversion in EDM framework
 - Denoise step from $x_{tdi} \rightarrow x_t$

$$x_{t} = x_{t+1} + \underbrace{\frac{\sigma_{t} - \sigma_{t+1}}{\sigma_{t+1}} \left(x_{t+1} - \underbrace{\left(c_{\text{skip}}^{t+1} x_{t+1} + c_{\text{out}}^{t+1} F_{\theta} \left(c_{\text{in}}^{t+1} x_{t+1}; c_{\text{noise}}^{t+1} \right) \right)}_{\text{noise removed at step } t}$$
(3)

- Rewrite to invert

$$\hat{x}_{t+1} = \frac{\sigma_{t+1}\hat{x}_t + (\sigma_t - \sigma_{t+1}) c_{\text{out}}^{t+1} F_{\theta} \left(c_{\text{in}}^{t+1} \hat{x}_{t+1}; c_{\text{noise}}^{t+1} \right)}{(\sigma_t - \sigma_{t+1}) \left(1 - c_{\text{skip}}^{t+1} \right) + \sigma_{t+1}}$$
(4

Approximation

$$F_{\theta}\left(c_{\text{in}}^{t+1}\hat{x}_{t+1}; c_{\text{noise}}^{t+1}\right) \approx F_{\theta}\left(c_{\text{in}}^{t}\hat{x}_{t}; c_{\text{noise}}^{t+1}\right) \tag{5}$$

- a. Noise Extrapolation: to solve the inaccuracy of EDM inversion
 - Inversion in EDM framework
 - Denoise step from $x_{tdi} \rightarrow x_t$

$$x_{t} = x_{t+1} + \underbrace{\frac{\sigma_{t} - \sigma_{t+1}}{\sigma_{t+1}} \left(x_{t+1} - \underbrace{\left(c_{\text{skip}}^{t+1} x_{t+1} + c_{\text{out}}^{t+1} F_{\theta} \left(c_{\text{in}}^{t+1} x_{t+1}; c_{\text{noise}}^{t+1} \right) \right)}_{\text{noise removed at step } t}$$
(3)

- Rewrite to invert

$$\hat{x}_{t+1} = \frac{\sigma_{t+1}\hat{x}_t + (\sigma_t - \sigma_{t+1}) c_{\text{out}}^{t+1} F_{\theta} \left(c_{\text{in}}^{t+1} \hat{x}_{t+1}; c_{\text{noise}}^{t+1} \right)}{(\sigma_t - \sigma_{t+1}) \left(1 - c_{\text{skip}}^{t+1} \right) + \sigma_{t+1}}$$
(4

Approximation

$$F_{\theta}\left(c_{\text{in}}^{t+1}\hat{x}_{t+1}; c_{\text{noise}}^{t+1}\right) \approx F_{\theta}\left(c_{\text{in}}^{t}\hat{x}_{t}; c_{\text{noise}}^{t+1}\right) \tag{5}$$

- Introducing a compounding approximation error!

- a. Noise Extrapolation: to solve the inaccuracy of EDM inversion
 - Inversion in EDM framework
 - Inverting with noise extrapolation

- a. Noise Extrapolation: to solve the inaccuracy of EDM inversion
 - Inversion in EDM framework
 - Inverting with noise extrapolation
 - Observation: near-linearity of x_t trajectory

$$x_{t_i} \rightarrow x_i$$
 and $x_{t_i} \rightarrow x_i$

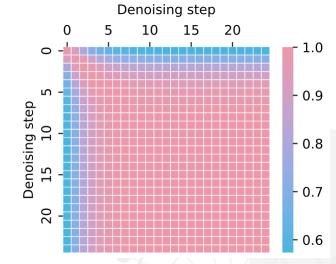


Figure. Cosine similarity matrix for pairs of latent vectors throughout the denoising process.

- a. Noise Extrapolation: to solve the inaccuracy of EDM inversion
 - Inversion in EDM framework
 - Inverting with noise extrapolation
 - Observation: near-linearity of x_t trajectory
 - Noise extrapolation

$$\bar{x}_{t+1} \approx \begin{cases} \underbrace{\frac{\sigma_{t+1}}{\sigma_t} \underbrace{(\hat{x}_t - x_0)}^{\sim \mathcal{N}(0, \sigma_t)} + x_0}_{\sim \mathcal{N}(0, \sigma_{t+1})} + x_0 & (\sigma_t > \Sigma) \\ \underbrace{\mathcal{N}(0, \sigma_{t+1})}_{\sim \mathcal{N}(0, \sigma_{t+1})} + x_0 & (\sigma_t \leq \Sigma) \end{cases}$$
(6)

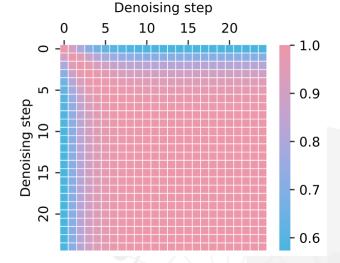


Figure. Cosine similarity matrix for pairs of latent vectors throughout the denoising process.

- a. Noise Extrapolation: to solve the inaccuracy of EDM inversion
 - Inversion in EDM framework
 - Inverting with noise extrapolation
 - Observation: near-linearity of x_t trajectory
 - Noise extrapolation

$$\bar{x}_{t+1} \approx \begin{cases} \underbrace{\frac{\sigma_{t+1}}{\sigma_t} (\hat{x}_t - x_0)}^{\sim \mathcal{N}(0, \sigma_t)} + x_0 & (\sigma_t > \Sigma) \\ \underbrace{\frac{\sigma_{t+1}}{\sigma_t} (\hat{x}_t - x_0)}^{\sim \mathcal{N}(0, \sigma_{t+1})} + x_0 & (\sigma_t \leq \Sigma) \end{cases}$$

$$(6)$$

$$\hat{x}_{t+1} = \frac{\sigma_{t+1}\hat{x}_t + (\sigma_t - \sigma_{t+1})c_{\text{out}}^{t+1}F_{\theta}\left(c_{\text{in}}^{t+1}\bar{x}_{t+1}; c_{\text{noise}}^{t+1}\right)}{(\sigma_t - \sigma_{t+1})\left(1 - c_{\text{skip}}^{t+1}\right) + \sigma_{t+1}}$$
(7)

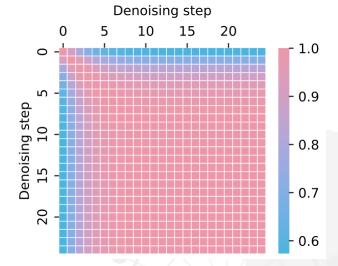


Figure. Cosine similarity matrix for pairs of latent vectors throughout the denoising process.

- a. Noise Extrapolation: to solve the inaccuracy of EDM inversion
 - Inversion in EDM framework
 - Inverting with noise extrapolation
 - Observation: near-linearity of x_t trajectory
 - Noise extrapolation

$$\bar{x}_{t+1} \approx \begin{cases} \underbrace{\frac{\sigma_{t+1}}{\sigma_t} (\hat{x}_t - x_0)}^{\sim \mathcal{N}(0, \sigma_t)} + x_0 & (\sigma_t > \Sigma) \\ \underbrace{\frac{\sigma_{t+1}}{\sigma_t} (\hat{x}_t - x_0)}^{\sim \mathcal{N}(0, \sigma_{t+1})} + x_0 & (\sigma_t \leq \Sigma) \end{cases}$$

$$(6)$$

$$\hat{x}_{t+1} = \frac{\sigma_{t+1}\hat{x}_t + (\sigma_t - \sigma_{t+1})c_{\text{out}}^{t+1}F_{\theta}\left(c_{\text{in}}^{t+1}\bar{x}_{t+1}; c_{\text{noise}}^{t+1}\right)}{(\sigma_t - \sigma_{t+1})\left(1 - c_{\text{skip}}^{t+1}\right) + \sigma_{t+1}}$$
(7)

- Denoise x_T with target label

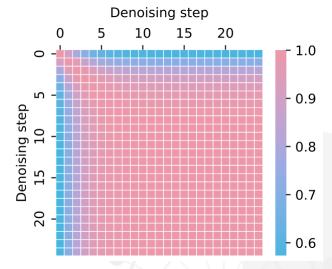
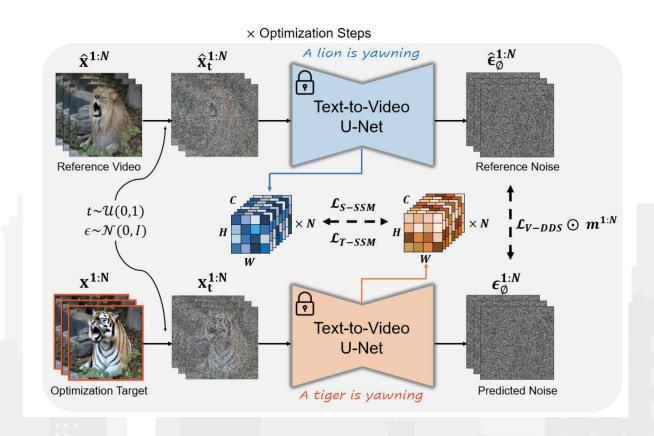


Figure. Cosine similarity matrix for pairs of latent vectors throughout the denoising process.



- a. Appearance Injection (V-DDS)
- b. Structure Correction
- c. Temporal Smoothing

Hyeonho Jeong, Jinho Chang, Geon Yeong Park, and Jong Chul Ye. "DreamMotion: Space-Time Self-Similar Score Distillation for Zero-Shot Video Editing", in Proc. ECCV, 2024.

a. Appearance injection: applying score distillation to video

- a. Appearance injection: applying score distillation to video
- Image score distillation: align $x_i(\theta)$ with the target condition y by optimizing the diffusion training loss gradient

$$\mathcal{L}_{ ext{SDS}}(heta; y) = \left\| oldsymbol{\epsilon}_{\phi}^w(oldsymbol{x}_t(heta), t, y) - oldsymbol{\epsilon}
ight\|_2^2,$$

- a. Appearance injection: applying score distillation to video
- Image score distillation: align $x_i(\theta)$ with the target condition y by optimizing the diffusion training loss gradient

$$\mathcal{L}_{ ext{SDS}}(heta;y) = \left\|oldsymbol{\epsilon}_{\phi}^w(oldsymbol{x}_t(heta),t,y) - oldsymbol{\epsilon}
ight\|_2^2,$$

- SDS \rightarrow DDS: incorporate a reference condition \hat{y} and a reference image \hat{x}_i

$$\mathcal{L}_{ ext{DDS}}(heta;y) = \left\| oldsymbol{\epsilon}_{\phi}^w(oldsymbol{x}_t(heta),t,y) - oldsymbol{\epsilon}_{\phi}^w(oldsymbol{\hat{x}}_t,t,\hat{y})
ight\|_2^2.$$

- a. Appearance injection: applying score distillation to video
- Image score distillation: align $x_i(\theta)$ with the target condition y by optimizing the diffusion training loss gradient

$$\mathcal{L}_{ ext{SDS}}(heta;y) = \left\|oldsymbol{\epsilon}_{\phi}^w(oldsymbol{x}_t(heta),t,y) - oldsymbol{\epsilon}
ight\|_2^2,$$

- SDS \rightarrow DDS: incorporate a reference condition \hat{y} and a reference image \hat{x}_i

$$\mathcal{L}_{ ext{DDS}}(heta;y) = \left\|oldsymbol{\epsilon}_{\phi}^w(oldsymbol{x}_t(heta),t,y) - oldsymbol{\epsilon}_{\phi}^w(oldsymbol{\hat{x}}_t,t,\hat{y})
ight\|_2^2.$$

- Video score distillation with masked gradients
 - V-DDS:

$$\mathcal{L}_{ ext{V-DDS}}(heta;y) = \left\|oldsymbol{\epsilon}_{\phi}^w(oldsymbol{x}_t^{1:N}(heta),t,y) - oldsymbol{\epsilon}_{\phi}^w(oldsymbol{\hat{x}}_t^{1:N},t,\hat{y})
ight\|_2^2.$$

- a. Appearance injection: applying score distillation to video
- Image score distillation: align $x_i(\theta)$ with the target condition y by optimizing the diffusion training loss gradient

$$\mathcal{L}_{ ext{SDS}}(heta;y) = \left\|oldsymbol{\epsilon}_{\phi}^w(oldsymbol{x}_t(heta),t,y) - oldsymbol{\epsilon}
ight\|_2^2,$$

- SDS \rightarrow DDS: incorporate a reference condition \hat{y} and a reference image \hat{x}_i

$$\mathcal{L}_{ ext{DDS}}(heta;y) = \left\|oldsymbol{\epsilon}_{\phi}^w(oldsymbol{x}_t(heta),t,y) - oldsymbol{\epsilon}_{\phi}^w(oldsymbol{\hat{x}}_t,t,\hat{y})
ight\|_2^2.$$

- Video score distillation with masked gradients
 - V-DDS:

$$\mathcal{L}_{ ext{V-DDS}}(heta;y) = \left\|oldsymbol{\epsilon}_{\phi}^w(oldsymbol{x}_t^{1:N}(heta),t,y) - oldsymbol{\epsilon}_{\phi}^w(oldsymbol{\hat{x}}_t^{1:N},t,\hat{y})
ight\|_2^2.$$

- Masking gradients ($m^{j s N}$ annotate the objects to be edited in each frame) $\nabla_{\theta} \mathcal{L}_{\text{V-DDS}} \odot m^{1:N}$.

- a. Appearance injection: applying score distillation to video
- Image score distillation: align $x_i(\theta)$ with the target condition y by optimizing the diffusion training loss gradient

$$egin{aligned} \mathcal{L}_{ ext{SDS}}(heta;y) &= \left\|oldsymbol{\epsilon}_{\phi}^w(oldsymbol{x}_t(heta),t,y) - oldsymbol{\epsilon}
ight\|_2^2, \end{aligned}$$

- SDS \rightarrow DDS: incorporate a reference condition \hat{y} and a reference image \hat{x}_i

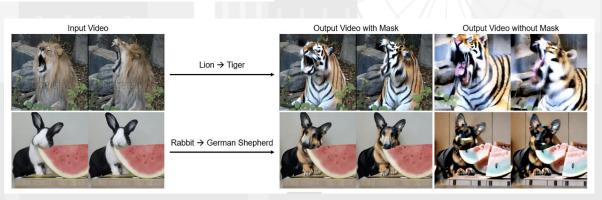
$$\mathcal{L}_{ ext{DDS}}(heta;y) = \left\|oldsymbol{\epsilon}_{\phi}^w(oldsymbol{x}_t(heta),t,y) - oldsymbol{\epsilon}_{\phi}^w(oldsymbol{\hat{x}}_t,t,\hat{y})
ight\|_2^2.$$

- Video score distillation with masked gradients
 - V-DDS:

$$\mathcal{L}_{ ext{V-DDS}}(heta;y) = \left\|oldsymbol{\epsilon}_{\phi}^w(oldsymbol{x}_t^{1:N}(heta),t,y) - oldsymbol{\epsilon}_{\phi}^w(oldsymbol{\hat{x}}_t^{1:N},t,\hat{y})
ight\|_2^2.$$

- Masking gradients

$$\nabla_{\theta} \mathcal{L}_{\text{V-DDS}} \odot m^{1:N}$$
.



- b. Structure correction: spatial self-similarity matching
 - Add identical noise
 - Feed-forward to video diffusion's U-Net ϵ_{θ} for keys

- b. Structure correction: spatial self-similarity matching
 - Add identical noise
 - Feed-forward to video diffusion's U-Net $\epsilon_{ heta}$ for keys
 - Calculate spatial self-similarity map

$$SS_{i,j}^{n}(\boldsymbol{x}_{t}^{1:N}) = cos(K_{i}^{n}(x_{t}^{1:N}), K_{j}^{n}(x_{t}^{1:N})),$$

- b. Structure correction: spatial self-similarity matching
 - Add identical noise
 - Feed-forward to video diffusion's U-Net $\epsilon_{ heta}$ for keys
 - Calculate spatial self-similarity map

$$SS_{i,j}^{n}(\boldsymbol{x}_{t}^{1:N}) = cos(K_{i}^{n}(x_{t}^{1:N}), K_{j}^{n}(x_{t}^{1:N})),$$

$$\mathcal{L}_{ ext{S-SSM}}(oldsymbol{x}_t^{1:N}, \hat{oldsymbol{x}}_t^{1:N}) = rac{1}{N} \sum_{n=1}^N \left\| SS^n(oldsymbol{x}_t^{1:N}) - SS^n(\hat{oldsymbol{x}}_t^{1:N})
ight\|_2^2,$$

- c. Temporal smoothing: temporal self-similarity matching
 - Add identical noise
 - Feed-forward to video diffusion's U-Net $\epsilon_{\, heta}$ for keys

- c. Temporal smoothing: temporal self-similarity matching
 - Add identical noise
 - Feed-forward to video diffusion's U-Net $\epsilon_{ heta}$ for keys
 - Spatial marginal mean

$$M[K(oldsymbol{x}_t^{1:N})] = rac{1}{H \cdot W} \sum_{i=1}^{H \cdot W} K_i(oldsymbol{x}_t^{1:N}),$$

- c. Temporal smoothing: temporal self-similarity matching
 - Add identical noise
 - Feed-forward to video diffusion's U-Net $\epsilon_{ heta}$ for keys
 - Spatial marginal mean

$$M[K(oldsymbol{x}_t^{1:N})] = rac{1}{H \cdot W} \sum_{i=1}^{H \cdot W} K_i(oldsymbol{x}_t^{1:N}),$$

- Calculate temporal self-similarity map

$$TS_{i,j}(\boldsymbol{x}_t^{1:N}) = cos(M_i[K(\boldsymbol{x}_t^{1:N})], M_j[K(\boldsymbol{x}_t^{1:N})]),$$

- c. Temporal smoothing: temporal self-similarity matching
 - Add identical noise
 - Feed-forward to video diffusion's U-Net $\epsilon_{ heta}$ for keys
 - Spatial marginal mean

$$M[K(oldsymbol{x}_t^{1:N})] = rac{1}{H \cdot W} \sum_{i=1}^{H \cdot W} K_i(oldsymbol{x}_t^{1:N}),$$

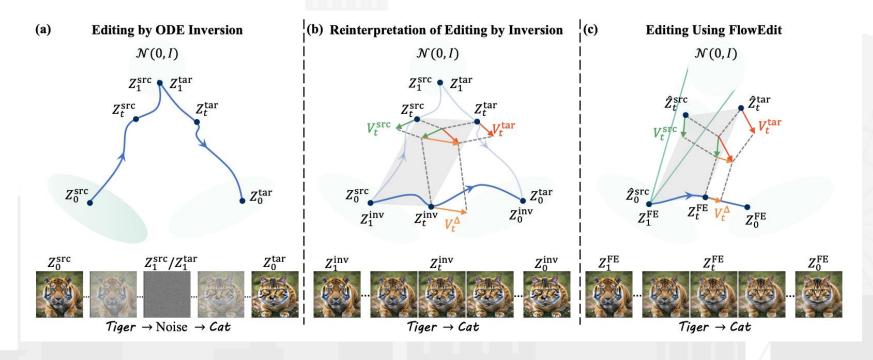
- Calculate temporal self-similarity map

$$TS_{i,j}(\boldsymbol{x}_t^{1:N}) = cos(M_i[K(\boldsymbol{x}_t^{1:N})], M_j[K(\boldsymbol{x}_t^{1:N})]),$$

$$\mathcal{L}_{ ext{T-SSM}}(oldsymbol{x}_t^{1:N}, oldsymbol{\hat{x}}_t^{1:N}) = \left\| TS(oldsymbol{x}_t^{1:N}) - TS(oldsymbol{\hat{x}}_t^{1:N})
ight\|_2^2.$$

FlowEdit

- FlowEdit: Inversion-Free Text-Based Editing Using Pre-Trained Flow Models
 - Editing by inversion (a)
 - Reinterpretation of editing by inversion (b)

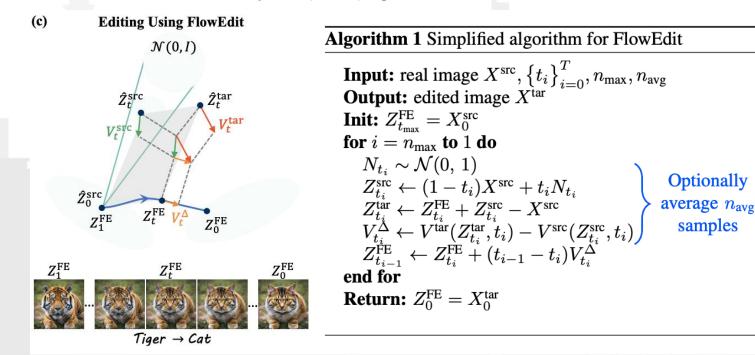


Vladimir Kulikov, Matan Kleiner, Inbar Huberman-Spiegelglas, and Tomer Michaeli. "FlowEdit: Inversion-Free Text-Based Editing Using Pre-Trained Flow Models", arXiv:2412.08629 [cs.CV], 2024.

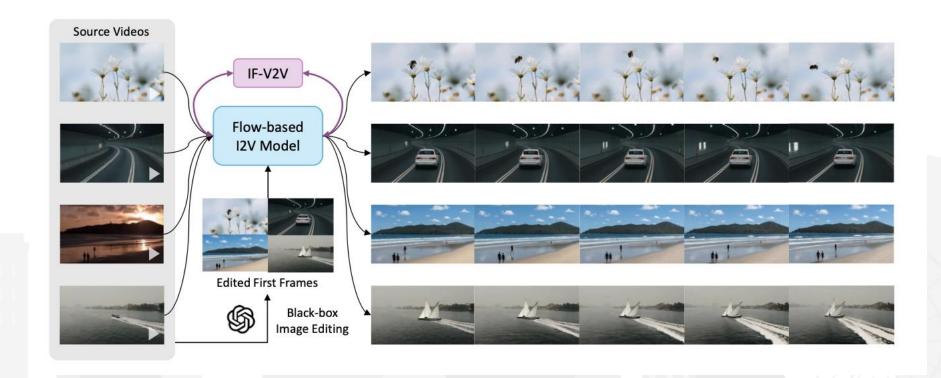
FlowEdit

- FlowEdit: Inversion-Free Text-Based Editing Using Pre-Trained Flow Models
 - Editing by inversion (a)
 - Reinterpretation of editing by inversion (b)
 - Editing using flow-edit (c)
 - Shorter direct path

$$\hat{Z}_t^{\rm src} = (1-t)Z_0^{\rm src} + tN_t,$$

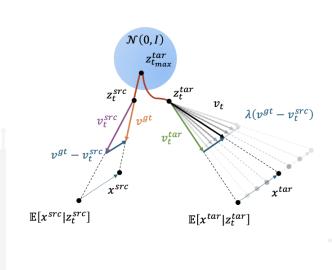


Methodology: Overview

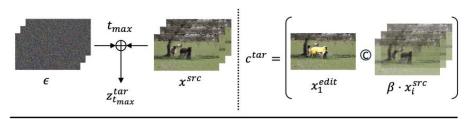


Contribution: Inversion-Free Video to Video editing (IF-V2V)

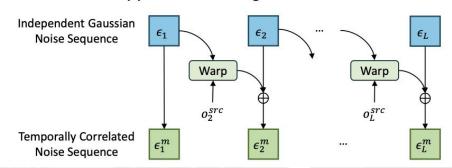
Methodology: Framework



a. Vector Field RectificationWith Sample Deviation (VFR-SD)



(ii) Motion-Preserving Initialization



b. Sturcture-And-Motion-Preserving Initialization (SMPI)

$$d(t_a, t_b) = \sum_{t=t_a}^{t_b - \Delta t} \|v_t^{tar} - v_{t+\Delta t}^{tar}\|_1$$

c. Deviation Caching(D-CACHE)

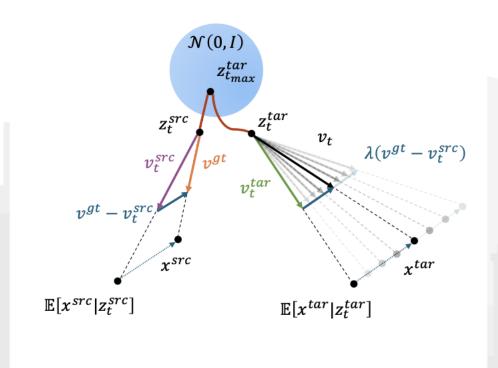
Methodology: VFR-SD

a. Vector field rectification with sample deviation (VFR-SD)

Methodology: VFR-SD

- a. Vector field rectification with sample deviation (VFR-SD)
 - Target ODE:

$$dz_t^{tar} = v(z_t^{tar}, t, c^{tar})dt,$$

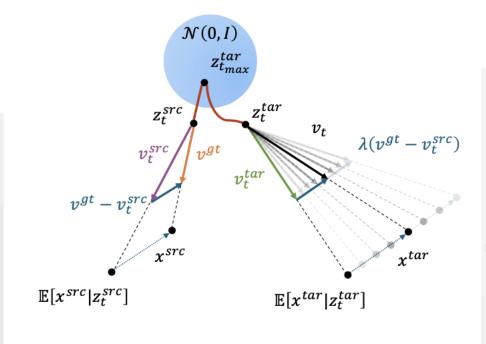


Methodology: VFR-SD

- a. Vector field rectification with sample deviation (VFR-SD)
 - Target ODE:

$$dz_t^{tar} = v(z_t^{tar}, t, c^{tar})dt,$$

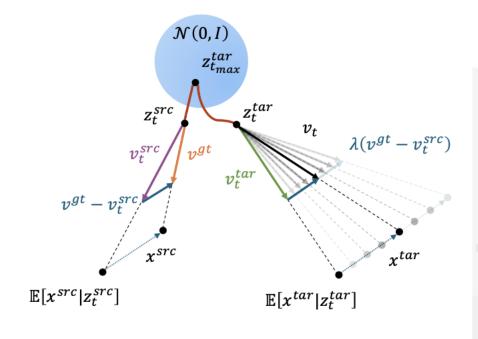
- Solution v_t^{tar} Less information from x^{src} !



- a. Vector field rectification with sample deviation (VFR-SD)
 - Target ODE:

$$dz_t^{tar} = v(z_t^{tar}, t, c^{tar})dt,$$

- Solution v_t^{tar} Less information from x^{src} !
- Observation: v^{gt} contains both information from x^{src} and c^{src}



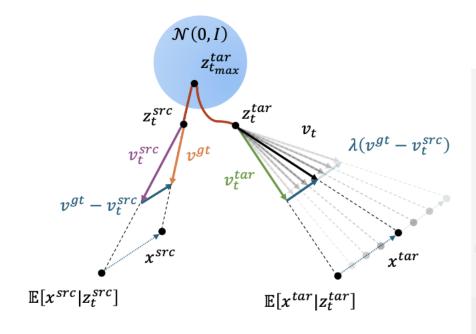
- a. Vector field rectification with sample deviation (VFR-SD)
 - Target ODE:

$$dz_t^{tar} = v(z_t^{tar}, t, c^{tar})dt,$$

- Solution v_t^{tar} Less information from x^{src} !
- Observation: v^{gt} contains both information from x^{src} and c^{src}
- Parallel ODE:

$$dz_t^{src} = v(z_t^{src}, t, c^{src})dt.$$

- Solution v_t^{src} only contains information from c^{src}



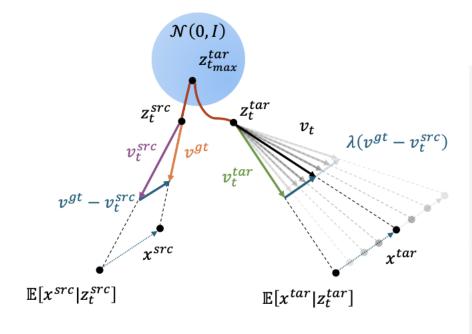
- a. Vector field rectification with sample deviation (VFR-SD)
 - Target ODE:

$$dz_t^{tar} = v(z_t^{tar}, t, c^{tar})dt,$$

- Solution v_t^{tar} Less information from x^{src} !
- Observation: v^{gt} contains both information from x^{src} and c^{src}
- Parallel ODE:

$$dz_t^{src} = v(z_t^{src}, t, c^{src})dt.$$

- Solution v_t^{src} only contains information from c^{src}
- Rectification vector: $v^{gt} v_t^{src}$



- a. Vector field rectification with sample deviation (VFR-SD)
 - Target ODE:

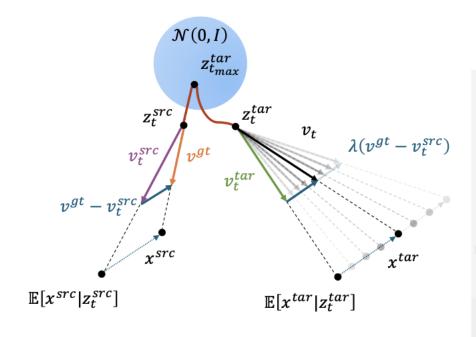
$$dz_t^{tar} = v(z_t^{tar}, t, c^{tar})dt,$$

- Solution v_t^{tar} Less information from x^{src} !
- Observation: v^{gt} contains both information from x^{src} and c^{src}
- Parallel ODE:

$$dz_t^{src} = v(z_t^{src}, t, c^{src})dt.$$

- Solution v_t^{src} only contains information from c^{src}
- Rectification vector: $v^{gt} v_t^{src}$
- Apply to v_t^{tar} (param λ serves as the rectification scale, set to 1.0 in experiments)

$$v_t = v_t^{tar} + \lambda (v^{gt} - v_t^{src}),$$



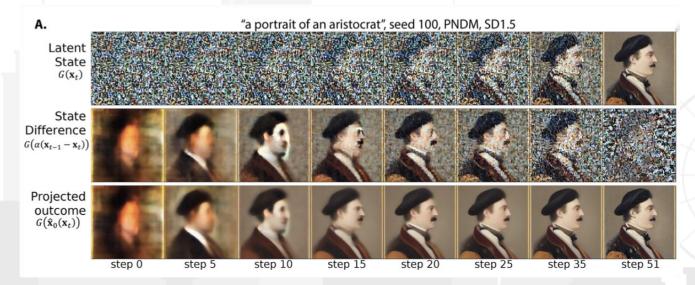
a. Vector field rectification with sample deviation (VFR-SD)

```
ALGORITHM 1: Vector Field Rectification with Sample Deviation (VFR-SD, §3.3)
Input: Source video x^{src}, source condition c^{src}, target condition c^{tar}, flow model v_{\theta}, initial timestep
         t_{max}, rectification scale \lambda.
Output: Edited video x^{tar}.
\epsilon \sim \mathcal{N}(0, I)
z_{t_{max}}^{tar}, z_{t_{max}}^{src} \leftarrow (1-t_{max})x^{src} + t_{max}\epsilon // Latents initialization.
v^{gt} \leftarrow \epsilon - x^{src}
// Numerically solve the parallel ODEs.
for t \leftarrow t_{max} \ downto \ 0 \ do
     v_t^{tar} \leftarrow v_{	heta}(z_t^{tar}, t, oldsymbol{c}^{tar}) // Predict the target denoising vector.
    v_t^{src} \leftarrow v_{\theta}(z_t^{src}, t, \boldsymbol{c}^{src}) // Predict the source denoising vector.
     v_t \leftarrow v_t^{tar} + \lambda(v^{gt} - v_t^{src}) // Rectification.
     z_{t-\Delta t}^{tar} \leftarrow \text{solver}_{t \to t-\Delta t}(z_t^{tar}, v_t) // Update target latents accordingly.
     z^{src}_{t-\Delta t} \leftarrow \text{solver}_{t \to t-\Delta t}(z^{src}_t, v^{gt}_t) // Update source latents with GT vector.
end
return x^{tar} \leftarrow z_0^{tar}
```

- b. Sturcture-and-motion-preserving initialization (SMPI)
 - Structure-preserving initialization

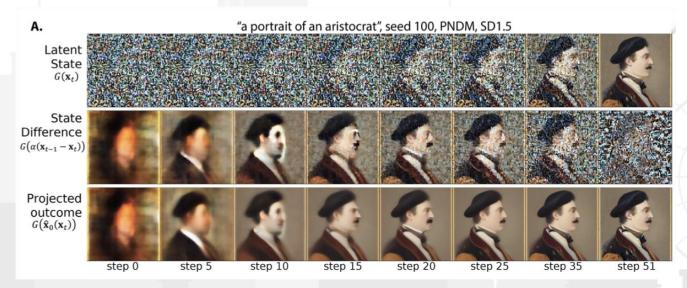
- b. Sturcture-and-motion-preserving initialization (SMPI)
 - Structure-preserving initialization
 - Observation-1: visual outlines are generated in the early stages of diffusion sampling and details at later timesteps

- b. Sturcture-and-motion-preserving initialization (SMPI)
 - Structure-preserving initialization
 - Observation-1: visual outlines are generated in the early stages of diffusion sampling and details at later timesteps
 - Figure. Characteristics of image generation by diffusion models



Binxu Wang, and John J. Vastola. "Diffusion Models Generate Images Like Painters: an Analytical Theory of Outline First, Details Later", arXiv:2303.02490 [cs.CV], 2023.

- b. Sturcture-and-motion-preserving initialization (SMPI)
 - Structure-preserving initialization
 - Observation-1: visual outlines are generated in the early stages of diffusion sampling and details at later timesteps
 - Figure. Characteristics of image generation by diffusion models



- Initial t_{max} < 1 (pure noise)

- b. Sturcture-and-motion-preserving initialization (SMPI)
 - Structure-preserving initialization
 - Observation-1: visual outlines are generated in the early stages of diffusion sampling and details at later timesteps
 - Initial t_{max} < 1 (pure noise) (set to 0.95 in experiments)

$$z_{t_{max}}^{tar} = (1 - t_{max})x^{src} + t_{max}\epsilon,$$

- b. Sturcture-and-motion-preserving initialization (SMPI)
 - Structure-preserving initialization
 - Observation-1: visual outlines are generated in the early stages of diffusion sampling and details at later timesteps
 - Initial t_{max} < 1 (pure noise) (set to 0.95 in experiments) $z_{t_{max}}^{tar} = (1 t_{max})x^{src} + t_{max}\epsilon,$
 - Observation-2: condition c^{tar} in mainstream I2V models consists of the concatenation of the first frame and zero paddings to align with video length L

- b. Sturcture-and-motion-preserving initialization (SMPI)
 - Structure-preserving initialization
 - Observation-1: visual outlines are generated in the early stages of diffusion sampling and details at later timesteps
 - Initial t_{max} < 1 (pure noise) (set to 0.95 in experiments)

$$z_{t_{max}}^{tar} = (1 - t_{max})x^{src} + t_{max}\epsilon,$$

- Observation-2: condition c^{tar} in mainstream I2V models consists of the concatenation of the first frame and zero paddings to align with video length L
 - Compose following c^{tar} to encode information, β is a small embedding scale (set to 0.025 in experiments)

$$c^{tar} = \texttt{concat}(x_1^{edit}, \beta\{x_i^{src}\}_{i=2}^L),$$

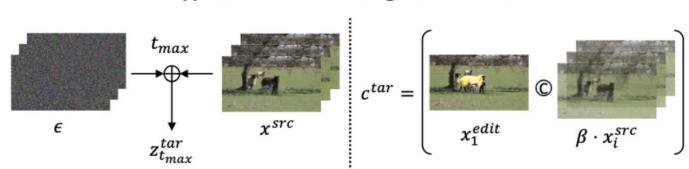
- b. Sturcture-and-motion-preserving initialization (SMPI)
 - Structure-preserving initialization
 - Observation-1: visual outlines are generated in the early stages of diffusion sampling and details at later timesteps
 - Initial t_{max} < 1 (pure noise) (set to 0.95 in experiments)

$$z_{t_{max}}^{tar} = (1 - t_{max})x^{src} + t_{max}\epsilon,$$

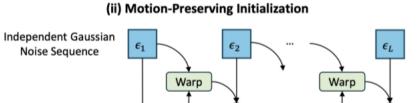
- Observation-2: condition c^{tar} in mainstream I2V models consists of the concatenation of the first frame and zero paddings to align with video length L
 - Compose following c^{tar} to encode information, β is a small embedding scale (set to 0.025 in experiments)

$$c^{tar} = \texttt{concat}(x_1^{edit}, \beta\{x_i^{src}\}_{i=2}^L),$$

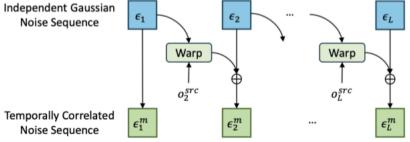
(i) Structure-Preserving Initialization



- b. Sturcture-and-motion-preserving initialization (SMPI)
 - Structure-preserving initialization
 - Motion-preserving initialization



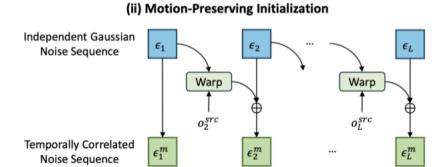
- b. Sturcture-and-motion-preserving initialization (SMPI)
 - Structure-preserving initialization
 - Motion-preserving initialization
 - Noise-warping method



(ii) Motion-Preserving Initialization

Ryan Burgert, Yuancheng Xu, Wenqi Xian, et al. "Go-with-the-Flow: Motion-Controllable Video Diffusion Models Using Real-Time Warped Noise", in Proc. CVPR, 2025.

- b. Sturcture-and-motion-preserving initialization (SMPI)
 - Structure-preserving initialization
 - Motion-preserving initialization
 - Noise-warping method
 - Extract source video's optical flow $\{o_i^{src}\}_{i=k}^L$
 - Sample independent Gaussian noise ϵ = $\{\epsilon_i\}_{i=1}^L$



Ryan Burgert, Yuancheng Xu, Wenqi Xian, et al. "Go-with-the-Flow: Motion-Controllable Video Diffusion Models Using Real-Time Warped Noise", in Proc. CVPR, 2025.

- b. Sturcture-and-motion-preserving initialization (SMPI)
 - Structure-preserving initialization
 - Motion-preserving initialization
 - Noise-warping method
 - Extract source video's optical flow $\{o_i^{src}\}_{i=k}^L$
 - Sample independent Gaussian noise $\epsilon = \{e_i\}_{i=1}^{L}$
 - Modulate noise as follows:

$$\epsilon_i^m = \epsilon_1,$$

$$\epsilon_i^m = \frac{1}{\sqrt{(1-\alpha)^2 + \alpha^2}}((1-\alpha) \cdot \text{warp}(\epsilon_{i-1}, o_i^{src}) + \alpha \epsilon_i),$$
 - Warp. حک warping operation according to the optical flow

- Blending factor α (set to 0.95 in expriments): hyperparameter for temporal correlation degree

Ryan Burgert, Yuancheng Xu, Wengi Xian, et al. "Go-with-the-Flow: Motion-Controllable Video Diffusion Models Using Real-Time Warped Noise", in Proc. CVPR, 2025.

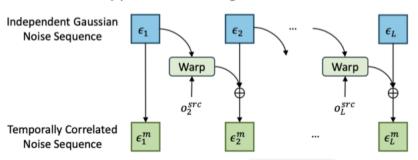
(ii) Motion-Preserving Initialization Independent Gaussian Noise Sequence Warp

Temporally Correlated

Noise Sequence

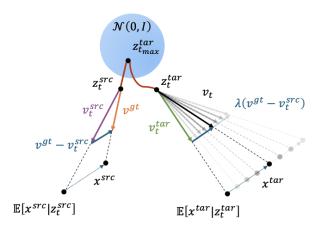
- b. Sturcture-and-motion-preserving initialization (SMPI)
 - Structure-preserving initialization
 - Motion-preserving initialization
 - Noise-warping method

(ii) Motion-Preserving Initialization



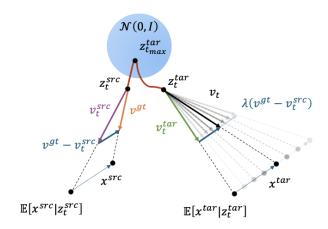
Methodology: D-CACHE

c. Deviation caching (D-CACHE)



Methodology: D-CACHE

- c. Deviation caching (D-CACHE)
 - Try to reduce the cost of calculating v^{gt} v^{src}_t
 - v^{gt} is constant

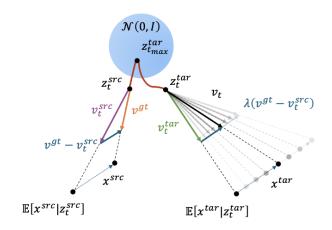


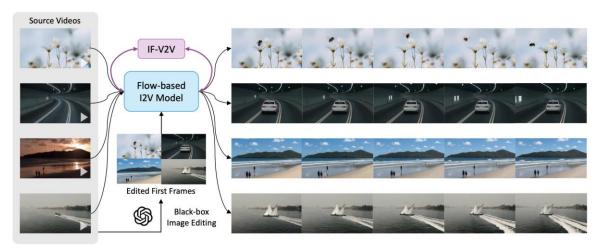
Methodology: D-CACHE

- c. Deviation caching (D-CACHE)
 - Try to reduce the cost of calculating $v^{gt} v_t^{src}$
 - v^{gt} is constant
 - Reuse $v^{gt} v_t^{src}$ when the variation of v_t^{tar} is small
 - Def. cumulative variation:

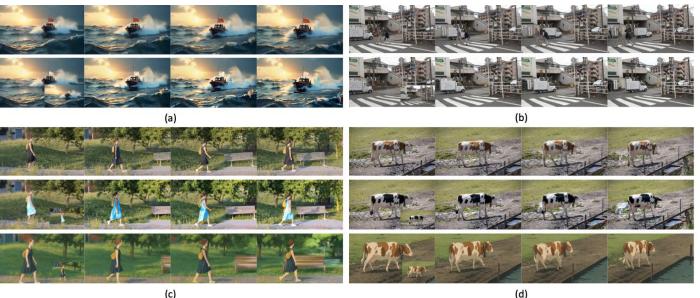
$$d(t_a, t_b) = \sum_{t=t_a}^{t_b - \Delta t} \|v_t^{tar} - v_{t+\Delta t}^{tar}\|_1,$$

- if $d(t_a, t_b) \le$ threshold δ (set to 0.5 in experiments), reuse cached source denoising vector
 - else, predict and cache v_t^{src}





(teaser) Object addition

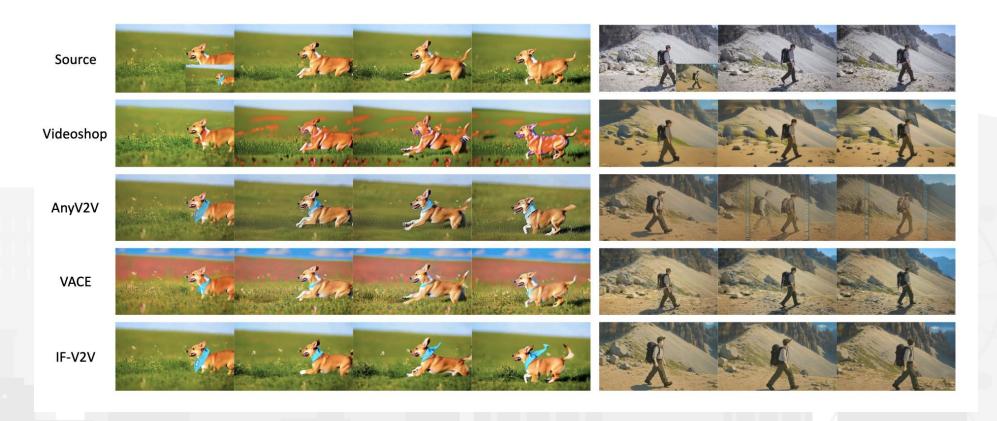


- (a) & (c.1) & (d.1) Attribute modification
- (b) Object removal
- (c.2) & (d.2) Stylization

- Comparisons to prior works
 - Datasets: 40 editing samples from DAVIS and in-the-wild videos
 - Metrics:
 - Aesthetics Score (AS): per-frame visual quality
 - Temporal Consistency (TC): video smoothness
 - Edited Frame Consistency (EFC): consistency between edited first frame and the generated video
 - Human Preferences (HP): 13 volunteers' average rating

Method	AS	TC	EFC	HP
Videoshop	4.62	97.87	76.85	1.69
AnyV2V	<u>4.81</u>	97.88	<u>81.47</u>	<u>2.56</u>
$VACE^{\dagger}$	4.57	<u>97.94</u>	75.65	1.64
IF-V2V (Ours)	4.88	98.71	92.79	4.50

- Comparisons to prior works



- Comparisons to prior works
- Ablation study

- Comparisons to prior works
- Ablation study
 - Additional metrics:
 - Original Video Consistency (OVC): per-frame consistency between the edited video and the original video
 - Average Editing Consistency (AEC): the mean value of EFC and OVC to assess the general editing consistency
 - Time: the average time taken per video for the editing process

- Comparisons to prior works
- Ablation study
 - Additional metrics:
 - Original Video Consistency (OVC): per-frame consistency between the edited video and the original video
 - Average Editing Consistency (AEC): the mean value of EFC and OVC to assess the general editing consistency
 - Time: the average time taken per video for the editing process

Setting	AS	TC	EFC	OVC	AEC	Time
I2V	4.88	98.70	93.71	75.03	84.37	554.27
I2V + Init	4.89	98.30	88.34	78.74	83.54	553.52
w/o VFR-SD	4.87	98.29	91.23	75.27	83.25	553.58
w/o SMPI	4.78	98.19	92.67	75.45	84.06	622.38
w/o D-Cache	4.87	98.41	93.37	76.61	84.99	804.46
IF-V2V	4.88	98.71	<u>92.79</u>	<u>76.44</u>	<u>84.62</u>	<u>616.60</u>

Experiments: Case Study

- Creative editing sample
 - Edit first frame to "a white car with its back towards the uphill direction"

Conclusion and Discussion

- Contribution
- Proposed IF-V2V: a user-friendly image-conditioned video editing method, leveraging strong temporal prior of pretrained flow-based I2V models
- Equipped with Plug-and-Play module: seamless integration with updated video models
- Versatile for diverse editing tasks: supports object addition, object removal, stylization, attribute modification, and even creative editing

Conclusion and Discussion

- Contribution
- Proposed IF-V2V: a user-friendly image-conditioned video editing method, leveraging strong temporal prior of pretrained flow-based I2V models
- Equipped with Plug-and-Play module: seamless integration with updated video models
- Versatile for diverse editing tasks: supports object addition, object removal, stylization, attribute modification, and even creative editing
- Shortcomings
 - Proved to be equivalent to FlowEdit, lacking the theoratical creativity

STRUCT Group Paper Reading

THANKS FOR LISTENING!

Taming Flow-based I2V Models for Creative Video Editing | arXiv 2025

Xianghao Kong, Hansheng Chen, Yuwei Guo, Lvmin Zhang, Gordon Wetzstein, Maneesh Agrawala, Anyi Rao

Presented by Junyi Fan 2025.11.23

