

专题论坛: 智能媒体计算

刘家瑛 北京大学王选计算机研究所 *liujiaying@pku.edu.cn*

北京大学 王选计算机研究所

- 北京大学的二级教学科研机构
- 研究方向包括图形图像处理技术与数字出版应用、认知计算与知识服务技术、
 跨媒体智能处理与分析技术、数字文档处理技术等
- 建有硕士、博士培养点及博士后流动站,电子出版新技术国家工程研究中心, 中国文字字体设计与研究中心,新闻出版智能媒体技术重点实验室等科研基地

北京大学 王选计算机研究所

- 1974年8月,国家计委批准立项重点科技 攻关项目"汉字信息处理系统工程",简称 为"748工程"
- 1975年,王选老师提出了汉字字形信息
 压缩及快速复原的技术方案

王选计算机研究所 发展历程

- **1976年**, 北京大学成立 "748工程会战组"
- 1977年,成立了"北京大学汉字信息处理 技术研究室"

王选计算机研究所 发展历程

- 1983年,研制成功华光工型计算
 机一激光汉字编辑排版系统
- 北京大学计算机科学技术研究所 正式成立

图为新华社印刷厂的试验车间里,周培源(左二)、 卢嘉锡(右三)、黄辛白(左一)等领导和专家认 真听取王选(右一)介绍华光II型系统的运行情况。

王选计算机研究所 发展历程

华光型计算机—"激光汉字编排版系统" 获1986年度国家科技进步一等奖

华光田型系统 获 **第14届** 日内瓦国际发明展览金牌奖

王选计算机研究所 发展历程

2002年, 王选老师荣获 2001年度国家最高科学技术奖

王选计算机研究所 发展历程

2019年, 北京大学计算机科学技术研究所 更名为 北京大学 王选计算机研究所

王选计算机研究所 发展历程

坚持"顶天立地"产学研道路

巩固现有媒体技术成果

发展智能媒体技术

9

STRUCT Group

智能影像计算

北京大学 王选计算机研究所

数字视频研究室

Spatial and Temporal **Restoration**, **Understanding** and **Compression** Team

• PI: 刘家瑛

- 邮箱: <u>liujiaying@pku.edu.cn</u>
- 网页: <u>http://www.wict.pku.edu.cn/struct/</u>

代表性工作: 艺术字智能化设计

Awesome Typography: Statistics-Based Text Effects Transfer

Shuai Yang, Jiaying Liu, Zhouhui Lian, Zongming Guo, CVPR 2017

代表性工作: 艺术字智能化设计

Awesome Typography: Statistics-Based Text Effects Transfer

Shuai Yang, Jiaying Liu, Zhouhui Lian, Zongming Guo, CVPR 2017

£.....

艺术字体库生成

艺术字体库生成

艺术字体库生成

应用场景扩展

- 基于笔画的图标/符号渲染
- 图标 → 图标/文字

无监督艺术字生成与图文设计

Context-Aware Text-Based Binary Image Stylization and Synthesis

Shuai Yang, Jiaying Liu, Wenhan Yang, and Zongming Guo, ACM MM 2018/IEEE TIP 2019

实验结果: 不同语言/字体间转换

不同语言的艺术字生成

不同字体的艺术字生成

实验结果: 图文设计

• S' 来自背景图像

实验结果: 图文设计

• S' 来自其他风格图像

其他艺术化表达

Symbol Design

其他艺术化表达

• Icon Rendering

Rendering emoji icons with the painting style of Van Gogh using "The Starry Night"

风格程度可控的艺术字生成

Controllable Artistic Text Style Transfer via Shape-Matching GAN

Shuai Yang, Zhangyang Wang, Zhaowen Wang, Ning Xu, Jiaying Liu and Zongming Guo, ICCV 2019

实验结果: 多尺度结构迁移结果

参考风格图

MAPLE

目标文字

实验结果: 多尺度结构迁移结果

参考风格图

SNOW

目标文字

调节字形变形程度

实验结果: 应用场景

• 不同的应用场景

智能感知与媒体计算

F

Intelligent Visual Computing

刘家瑛 北京大学

SCENE

WHAT HUMANS SEE

MACHINE FEATURES

MACHINE ANALYTICS

IMAGE CODING FOR WHOM?

IMAGE CODING NEXTGEN

- Scalable (according to utilizations)
- Efficient compression for joint human and machine vision

Ling-Yu Duan, Jiaying Liu, Wenhan Yang, Tiejun Huang, Wen Gao. Video Coding for Machines: A Paradigm of Collaborative Compression and Intelligent Analytics. arXiv:2001.03569, 2020

INFORMATION DENSITY SPECTRUM

- **Descriptor coding** for efficient machine vision analytics (low bit-rate)
- Sophisticated video codecs for improved human vision (high bit-rate)

IMAGE REPRESENTATIONS

- Efficient for structural information
- Maintain scalability
- Sparse and light-weight
- Supports smooth scaling

V CONS

- Inefficient for details in images
- Ambiguous in color

IMAGE REPRESENTATIONS

- Avoid color ambiguity
- Sparse and compact
- Related to visual fidelity

V CONS

- Usually randomly distributed
- Inefficient for further compress

HUMAN FACES

Analytics of Faces

Faces are naturally salient area in images we are looking at. Machine vision systems to analysis faces have been widely developed. It is the reflection of humanity in technology.

SCALABLE FRAMEWORK

- Conceptual compression to achieve high quality with compact features
- Scalable bit-stream for different tasks
- Vectorized Edges + Sparse Pixels

ENCODER • EDGE

• Edge detection via structured forests

P. Dollar and C. L. Zitnick. Structured forests for fast edge detection. ICCV, 2013.

ENCODER • EDGE

- Edge detection via structured forests
- *AutoTrace* to convert edge pixels to vectorized representations
 - Represented by lines and curves
 - Short and trivial edges are screened
- Prediction for Partial Matching (PPM) to losslessly compress vectors

ENCODER · COLOR

- Sparse pixels sampled according to edges
 - Segments: sample on both sides

ENCODER • COLOR

- Sparse pixels sampled according to edges
 - Segments: sample on both sizes
 - Curves: sample on areas with steepest gradients

DECODER• MACHINE VISION

- Image-to-image translation
 - Render pixels with vectorized representations
 - Edge-to-RGB translation

DECODER• HUMAN VISION

- Image-to-image translation
 - Render pixels with vectorized representations
 - Generate masks for completion synthesis
 - Image inpainting

LOSS FUNCTIONS

- Reconstruction Loss
 - $\mathcal{L}_{r} = \mathbb{E}[\lambda_{1} \parallel I_{G} I \parallel + \lambda_{2} \mathrm{SSIM}(I_{G}, I)]$
- Perceptual Loss

 $\mathcal{L}_p = \mathbb{E}[\lambda_3 \text{PERC}(I_G, I)]$

• Adversarial Objective $\mathcal{L}_{G} = -\mathbb{E}[D(I_{G}, E, M)]$ $\mathcal{L}_{D} = \mathbb{E}[\text{ReLU}(\tau + D(I_{G}, E, M))]$ $+ \mathbb{E}[\text{ReLU}(\tau - D(I, E, M))]$

EXPERIMENTAL RESULTS

HUMAN VISION

Subjective preference survey. Measuring fidelity and Aesthetics.

MACHINE VISION

Evaluate facial landmark detection. Measuring information preservation.

SCALABLE OUTPUT

MACHINE VISION

INPUT IMAGE

- Quantitatively evaluate the accuracy of facial landmark detection on the reconstructed images.
- Results show statistically improved accuracy at a lower bit-rate.
- While the basic layer maintain a high accuracy, the enhancing layer provide more fidelity.

真实场景下的自学习超分辨率

Self-Learning Super-Resolution in Real-World Scenes

樊泽嘉 北京大学

超高清视界

• 老照片的修复

• 老照片的修复

• 监控视频的识别分析

真实世界超分辨率

• 复杂多变的降质情况

SRCNN / 27.95 dB

Wang et al. Real-ESRGAN: Training real-world blind super-resolution with pure synthetic data. ICCV 2021.

Shocher et al. 'Zero-Shot' Super-Resolution using Deep Internal Learning. CVPR 2018.

Kligler et al. Blind Super-Resolution Kernel Estimation using an Internal-GAN. NIPS 2019.

研究问题

- 视频超分辨率方法通常依赖于成对的合成数据
- 训练数据与测试场景不匹配

Unknown Blind Kernel Input (PSNR/SSIM) Supervised VSR SLVSR 23.97/0.5910 26.41/0.7147

研究目标

- 旨在实现自学习的零样本视频超分辨率框架
- 不依赖外部数据

Self-similarity

- 跨尺度空间自相似性
- 时域自相似性

- 针对时间上下文, 使用间隔扩展的采样或逆序采样
- 对于空间上下文,进行旋转、镜像和仿射变换

- 针对时间上下文, 使用间隔扩展的采样或逆序采样
- 对于空间上下文,进行旋转、镜像和仿射变换

实验结果

• 盲模糊核情况下

Method	RCAN	DUF	ZSSR	
	(1 Frame)	(7 Frames)	(1 Frame)	
Calendar	21.46/0.6787	20.08/0.6139	21.54/0.6808	
City	25.41/0.6293	23.84/0.5784	25.24/0.6261	
Foliage	24.13/0.6453	22.54/0.5697	24.11/0.6431	
Walk	25.32/0.7794	23.65/0.7527	25.31/0.7855	
Average	24.08/0.6832	22.53/0.6287	24.05/0.6839	
Method	KernelGAN	SinGAN	SLVSR	
	(1 Frame)	(1 Frame)	(3 Frames)	
Calendar	22.17/0.7705	20.71/0.6118	25.10/0.8431	
City	26.07/0.7026	24.74/0.5744	26.93/0.7459	
Foliage	25.76/0.7835	24.15/0.6021	28.66/0.8651	
Walk	26.96/0.8433	24.43/0.7465	27.86/0.8574	
Average	25.24/0.7750	23.45/0.6337	27.14/0.8279	

KernelGAN

SinGAN

SLVSR

Ground Truth

KernelGAN

SinGAN

SLVSR

Ground Truth

KernelGAN

SinGAN

SLVSR

Ground Truth

• 真实拍摄情形下

KernelGAN SinGAN

• 真实拍摄情形下

• 在外部学习的先验基础上,进行权重图引导的内部学习

实验结果

• 在真实场景采集的低质图像上

	NIQE \downarrow	BRISQUE \downarrow	PI↓	LPIPS \downarrow	$SSEQ \downarrow$	NRQM ↑
Bicubic	8.83	67.15	8.10	0.477	57.74	2.72
Self-learning method						
ZSSR	7.91	62.65	7.54	0.406	52.84	3.03
KernelGAN	6.45	52.53	6.38	0.317	48.07	3.80
Supervised method						
RCAN	8.55	66.68	7.84	0.442	56.62	3.01
HAT	5.26	32.23	5.08	0.247	25.58	5.38
SWINIR	4.68	33.79	4.71	0.252	28.66	5.50
BSRGAN	4.65	25.35	4.46	0.269	23.04	5.98
RealESRGAN	4.68	29.13	4.49	0.273	24.51	5.87
Semi-supervised method						
AdaSSR+SWINIR	4.56	32.84	4.56	0.244	28.92	5.67
AdaSSR+BSRGAN	4.54	25.15	4.34	0.263	23.69	6.09
AdaSSR+RealESRGAN	4.25	24.47	4.02	0.265	24.21	6.34

Input

AdaSSR

ZSSR

Q

16

20 24

- 28

- 32

- 36

- 40

4

36 32 28 24 20 16 12

8

10 <u>-</u> -12 <u>-</u>

> יןיןיןי ס 10

Shocher et al. Zero-Shot' Super-Resolution using Deep Internal Learning. CVPR 2018.

KernelGAN

AdaSSR

Kligler et al. Blind Super-Resolution Kernel Estimation using an Internal-GAN. NIPS 2019.

RCAN

Zhang et al. Image super-resolution using very deep residual channel attention networks. ECCV 2018.

10

HAT

0

12 16

20

- 24 - 28

- 32

- 36

- 40

4

36 32 28 24 20 16 12

8

10 <u>-</u> -12 <u>-</u>

1111

10

Chen et al. Activating more pixels in image super-resolution transformer. CVPR 2023.

SWINIR

Q

12

16

20

- 24 - 28

- 32

- 36

-40

36 32 28 24 20 16 12

8

10 <u>-</u> -12 -

111111

10

Jingyun Liang et al. Swinir: Image restoration using swin transformer. ICCVW 2021.

BSRGAN

Kai Zhang et al. Designing a practical degradation model for deep blind image super-resolution. ICCV 2021.

RealESRGAN

0

16

20

24 28

- 32

- 36

-40

36 32 28 24 20 16 12

8

10 -

12-

Wang et al. Real-ESRGAN: Training real-world blind super-resolution with pure synthetic data. ICCV 2021.

暗光信号解耦与智能成像

Decoupling of Low-Light Signals and Intelligent Imaging

黄浩峰 北京大学

手机拍照

数码摄影

监控视频

OPPO FindX6 Pro

超光感潜望长焦

"暗光实现创作自由"

Lore et al. LLNet: A deep auto-encoder approach to natural low-light image enhancement. PR 2017.

Wei et al. Deep Retinex Decomposition for Low-Light Enhancement. BMVC 2018.

Guo et al. Zero-Reference Deep Curve Estimation for Low-Light Image Enhancement. CVPR 2020.

Jiang et al. EnlightenGAN: Deep Light Enhancement Without Paired Supervision. IEEE TIP 2021.

Output RGB

Bayer Raw

Black Level

数据集构建

模型优化

噪声建模

数据集构建

模型优化

噪声建模

相关工作

研究问题

RAW图像特性

信号特性解耦及量化

信号特性解耦及量化

提亮后的16bit图像

信号特性解耦及量化

RAW领域引导的曝光增强

RAW领域引导的曝光增强

实验结果

方法	PSNR↑	SSIM ↑	VIF↑	NIQE \downarrow
HE [1]	5.90	0.028	0.095	28.27
BPDHE [38]	10.67	0.072	0.051	18.64
Dehazing [5]	12.81	0.103	0.077	25.79
MSR [9]	10.04	0.070	0.116	32.24
MF [40]	13.87	0.111	0.108	33.13
LIME [28]	12.59	0.102	0.118	32.33
BIMEF [29]	13.06	0.110	0.086	26.27
LLNet [11]	14.21	0.221	0.047	18.02
SICE [12]	14.26	0.366	0.011	6.89
KinD [13]	13.50	0.109	0.048	17.73
DeepUPE [30]	12.10	0.070	0.028	18.30
本工作方法	28.42	0.880	0.139	15.23

本工作

直方图均衡化

输入图像 / 目标图像

本工作

Ibrahim and Kong. Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE TCE 2007.

输入图像 / 目标图像

Dehazing

Dong et al. Fast efficient algorithm for enhancement of low lighting video. ICME 2011.

输入图像 / 目标图像

本工作

MSR

156

实验结果

输入图像 / 目标图像

1 - 12-

Fu et al. A fusion-based enhancing method for weakly illuminated images. Signal Process 2016.

实验结果

输入图像 / 目标图像

Guo et al. LIME: Low-light image enhancement via illumination map estimation. IEEE TIP 2017.

输入图像 / 目标图像

本工作

BIMEF

Ying et al. A bio-inspired multi-exposure fusion framework for low-light image enhancement. arXiv 2017.

输入图像 / 目标图像

Lore et al. LLNet: A deep autoencoder approach to natural low-light image enhancement. Pattern Recognition 2017.

输入图像 / 目标图像

Cai et al. Learning a deep single image contrast enhancer from multi-exposure images. IEEE TIP 2018.

输入图像 / 目标图像

Zhang et al. Kindling the darkness: A practical low-light image enhancer. MM 2019.

输入图像 / 目标图像

DeepUPE

Wang et al. Underexposed photo enhancement using deep illumination estimation. CVPR 2019.

面向机器视觉

从低质视觉增强到跨域适配理解

From Low-Quality Visual Enhancement to Cross-Domain Adaptation Understanding

汪文靖 北京大学

人脸检测

Image source: Li et al. DSFD: Dual Shot Face Detector. CVPR 2019.

低光照人脸检测

低光照降低下游机器分析任务性能

• 夜间自动驾驶

低光照降低下游机器分析任务性能

• 监控视频分析

低光照降低下游机器分析任务性能

• 图像检索

面向低光照的无监督域迁移技术

× 重新标注一套低光照数据费时费力√"正常光照 → 低光照"的无监督域迁移

"夜晚 → 白天"图像转换

• 组合正常光照与低光照域的模型

• "增强-检测"多任务自编码变换

Cui et al. Multitask AET with Orthogonal Tangent Regularity for Dark Object Detection. ICCV 2021

相关工作

• "白天→微光→夜晚" 逐步地将模型迁移至目标域

• 基于光照不变的边缘提取算子

$$\operatorname{CIConv}(x,y) = \frac{\log\left(\operatorname{CI}^2(x,y,\sigma=2^s) + \epsilon\right) - \mu_{\mathcal{S}}}{\sigma_{\mathcal{S}}}$$

2019 IEEE ICRA ToDayGAN

2020 ECCV YOLO-in-the-Dark

2021 ICCV MAET

2021 CVPR DANNet

2021 ICCV CIConv

• 正常光照与低光照的域间隙分为

• 像素层级外观差距

- 物体层级语义差异

• 正常光照与低光照的域间隙分为

• 像素层级外观差距

• 物体层级语义差异

• 总结与建模

• 总迁移框架

• 面向高层视觉的提亮曲线族

条件

- I. 经过 (0,0) 和 (1,1): f(0, α) = 0, f(1, α) = 1
- **Ⅱ. 单调可微:** f(·, α): [0,1] → [0,1] 单调可微
- III. 保证表示范围: $\forall x_0 \in [0,1]$ 和 $\forall y_0 \in [0,1]$, $\exists \alpha_0 \notin f(x_0, \alpha_0) = y_0$
- IV. 防止退化为水平线: $\forall \alpha$, $\forall x \in (0,1)$, $\partial f(x,\alpha) / \partial x \neq 0$

• 面向高层视觉的提亮曲线族

输入图像


```
正切函数(不满足条件IV)
```


正弦函数(不满足条件III)

倒数函数(满足全部条件)

• 面向高层视觉的提亮曲线族

• 面向高层视觉的提亮曲线族

函数名	解析式	数值	条件 III	条件 IV
对数	$\frac{\log(\alpha x + 1)}{\log(\alpha + 1)}$	$\alpha > 0$	1/2	\checkmark
倒数	$\frac{(\alpha+1)x}{x+\alpha}$	$\alpha \in (-\infty, -1) \cup (0, +\infty)$	\checkmark	\checkmark
指数	$\frac{\alpha^x - 1}{\alpha - 1}$	$\alpha \in [0,1) \cup (1,+\infty)$	~	\checkmark
幂	$\operatorname{AT}(x^{\alpha}, x_1, x_2)$	$0 < x_1 < x_2, \alpha > 0$	\checkmark	\checkmark
反正切/反余切	$AT(arctan(x), x_1, x_2)$	$x_1 < x_2$	\checkmark	\checkmark

• 双向底层视觉迁移

• 多任务高层视觉迁移

实验结果

• 低光照人脸检测性能通测

方法类别	方法	mAP (%)
	Faster-RCNN	1.7
	SSH	6.9
	RetinaFace	8.6
一位长词	SRN	9.0
入脑检测	SFA	9.3
	PyramidBox	12.5
	Small Hard Face	16.1
	DSFD	16.1
	MUNIT	29.7
基于压暗 骨架· DSFD	CycleGAN	31.9
	CUT	32.7

方法类别	方法	mAP (%)
	SICE	4.7
	RetinexNet	12.0
	KinD	15.8
基于提亮	EnlightenGAN	31.3
骨架: DSFD	LIME	40.7
	Zero-DCE++	40.9
	Zero-DCE	41.3
	MF	41.4
	OSHOT	25.4
特征迁移	Progressive DA	28.5
骨架: DSFD	Bidirectional DA	33.7
	Pseudo Labeling	35.1
	本方法	45.9

实验结果

实验结果

(b) SICE

(c) RetinexNet

(d) KinD

(e) LIME

(f) MF

(g) EnlightenGAN 重训 (h) EnlightenGAN (i) Zero-DCE 重训 (j) Zero-DCE (k) 本方法 (l) 真值

• 非训练数据集上的困难样本

实验结果

• 分类任务, Top-1 准确率 46.9% → 60.7%

Cat, 51.6%

Boat, 90.0%

Motorbike, 99.7%

Bicycle, 99.7%

实验结果

• 通用物体检测任务, mAP 29.3% → 30.4%

本方法

• 街景分割任务, mloU 17.1% → 23.1%

基线方法

本方法

从低质视觉增强到跨域适配理解

从低质视觉增强到跨域适配理解

从低质视觉增强到跨域适配理解

更细致地分析人的行为

走路× 跑步× 跳舞√

噪声鲁棒的视频序列行为分析

Noise-Robust Video Sequence Behavior Analysis

林里浪 北京大学

人体定位

动作分析

动作分析

动作分析

动作分析应用领域

相关工作

Wang et al. Cross-view action modeling, learning and recognition. CVPR 2014.

Shahroudy et al. NTU RGB+D: A large scale dataset for 3D human activity analysis. CVPR 2016.

Shi et al. Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition, CVPR 2019.

相关工作

基于噪声适应的人体骨架动作识别

基于噪声适应的人体骨架动作识别

• 骨架去噪

0.5

0.5

У

У

噪声数据集建立

• NSD (Noisy Skeleton Dataset) 数据库概览

NSD数据样例

• 基于回归的噪声适应模型

• 基于回归的噪声适应模型

• 基于回归的噪声适应模型

• NSD数据集

测试方法 (Acc. %)	Cross-Subject	Cross-View
STA-LSTM	44.3	28.6
TPN ¹	46.9	29.7
VA-LSTM ²	50.0	34.5
ST-GCN ³	48.2	35.8
Denoised-LSTM ⁴	38.1	26.1
Baseline	50.7	34.6
R-NAN	<u>55.3</u>	40.5
G-NAN	55.5	<u>36.3</u>

¹Hu et al. Temporal Perceptive Network for Skeleton-Based Action Recognition. BMVC 2017.

²Zhang *et al.* View adaptive recurrent neural networks for high performance human action recognition from skeleton data. *ICCV 2017*.

³Yan, et al. Spatial temporal graph convolutional networks for skeleton-based action recognition. AAAI 2018.

⁴Demisse *et al.* Pose encoding for robust skeleton-based action recognition. *CVPRW 2018*.

• 和骨架去噪方法的比较 - 主观分析

• 和骨架去噪方法的比较 - 主观分析

语义引导的生成

语义引导的生成

跨越语义鸿沟的开放世界图像生成

Open-World Image Generation across Semantic Gap

马逸扬 北京大学

相关工作

• 生成模型: 合成符合真实数据分布的"伪数据"

- 高质量的生成模型
- 衡量跨模态语义对齐的标准
- 跨模态生成图像的方法

Ho et al. Denoising diffusion probabilistic models. NIPS 2020.

Radford *et al.* Learning transferable visual models from natural language supervision. *ICML* 2021.

vibrant portrait painting of Salvador Dalí with a robotic half face

a shiba inu wearing a beret and black turtleneck

a close up of a handpalm with leaves growing from it

Aditya et al. Hierarchical text-conditional image generation with clip latents. arXiv 2022.

- 串联两个跨模态扩散模型+一个上采样扩散模型
- 超大规模数据+超大计算资源

Aditya et al. Hierarchical text-conditional image generation with clip latents. arXiv 2022.

Three spheres made of glass falling into ocean. WaterVines in the shape of text 'Imagen' with flowers and
butterflies bursting out of an old TV.A strawberry splashing in the coffee in a mug under
the starry sky.

Saharia et al. Photorealistic text-to-image diffusion models with deep language understanding. NIPS 2022.

• 一个跨模态扩散模型+上采样扩散模型

• 降低扩散模型的训练&采样代价

• 基于其技术的大规模项目: Stable Diffusion

Rombach et al. High-resolution image synthesis with latent diffusion models. CVPR 2022.

研究目标

• 文到图模型: 定制化程度有限

定制主体的多模态引导生成

多模态联合编码器

训练数据

使用预训练文到图模型

定制主体的多模态引导生成

(b) Inference • 挑战: 主体图像的背景影响生成 Xt CLIP Text Latent Space • 方案: Q hy KV Noise-Input Text y Cross-CLIP_{Text} Prediction "a dog under a tower." Attention 采样时混合引导 Q Model KV Fusing Positions p: 2, 5Sampling \mathbf{X}_{t-1} TIUE h Input Images x_s $\hat{\boldsymbol{\epsilon}}_f = \alpha \hat{\boldsymbol{\epsilon}}_u + (1 - \alpha) \hat{\boldsymbol{\epsilon}}_y$ Unified Input Set Multi-Modal (y, \mathbf{X}_s, p) X₀ Latent Space Diffusion Model 261

定制主体的多模态引导生成

无需任何采样时的参数模型精调

实用、高效的主体定制化生成

input image

a <u>car</u> running in front of the Eiffel Tower in the winter.

a <u>car</u> running on the road with forest in the background.

a <u>car</u> on the snow.

a <u>car</u> with a mountain in the background under sunny sky.

a <u>horse</u> running on grass in front of trees under a starry sky with galaxies.

a toy <u>horse</u> on a woody table.

a shirt with a <u>horse</u> on it.

an astronaut is riding a <u>horse</u>, plastic material.

实验结果

input image

a <u>car</u> running in the countryside at sunset.

a <u>car</u> on a bridge above the ocean in the afternoon.

a green <u>car</u> in front of the Big Ben.

a cat is playing with a toy <u>car</u>.

input image

a <u>dog</u> on top of snow with fuji mountain in the background.

a <u>dog</u> is next to a container on the beach.

a <u>dog</u> on grass with the ocean at sunrise.

a <u>dog</u> on the glacier wearing a hat.

实验结果

input image

a <u>bin</u> on the floor with flowers in it.

a <u>bin</u> robot made of the material of the <u>bin</u>.

a <u>bin</u> tower on grass.

a sculpture of a <u>bin</u> made of plaster.

input image

a <u>horse</u> eating grass with snow mountain in the background.

Egyptian pyramids with a <u>horse</u> in saddle in front of them.

an anime painting of a cute <u>horse</u>.

a blanket with a <u>horse</u> on it.

实验结果

input image

a dog in front of a <u>mountain</u>.

a house in the <u>mountain</u> with a chimney.

forest in the <u>mountain</u> at night with illumination.

a painting of the <u>mountain</u> hanging on the wall.

input image

a <u>cat</u> playing on the beach at sunset.

a <u>cat</u> standing on the cliff with a volcano in the background.

a sleeping <u>cat</u> on stairs.

C验结果

input image

in the style of the painting.

a painting of a car, in the style of the <u>painting</u>.

input image

a sculpture of a dog made of a sculpture of a car made of a sculpture of a city made of a sculpture of a man made of the material of the <u>sculpture</u>. the material of the <u>sculpture</u>. the material of the <u>sculpture</u>.

实验结果

input image

input image

a car is next to another car on a poster.

Pasoumumut

实验结果

American

STRUCT @ PKU

Spatial and Temporal Restoration, Understanding and Compression Team

CENTER LAN

RUBURA

1

智能媒体计算专题论坛

主 办:北京大学王选计算机研究所数字视频研究室 承 办:AITIME 协 办:东浩兰生(集团)有限公司

Panel讨论 科研生活的 "预训练" "任务驱动" 与 "多模态"

陈智能 复旦大学青年研究员

李泽超 南京理工大学 计算机科学与工程学院教授

高盛华 上海科技大学研究员

严骏驰 上海科技大学 信息学院 副教授

上午报告中您印象深刻的工作, 以及您对该方向的一些建议

话题一

你的小组科研经历? 你的 STRUCT "科研预训练"的 特性与故事?

导师如何引导科研的 "任务驱动"? From scratch, finetuning or prompt?

谈谈你觉得最有收获或印象最深 的一次"任务驱动"经历

话题四

从CNN到Transformer到大模型, 浪潮袭来,科研人员应该站在浪潮之 巅还是坚持坐稳自己的冷板凳?

话题六 大模型变革下的科研压力 与就业焦虑

大模型,知识爆炸下导师焦虑吗? 如何在任务驱动下寻求发展, 分享更多成长经验?

话题七

话题八 如何制定合适的"任务"?当你和合 作者对"任务"的目标函数认知不 一致时,你是如何解决和应对的?

话题九 你在北大的"多模态" 学习/生活?

当"预训练","任务驱动"与 "多模态"发生冲突的时候, 该如何平衡与抉择

A.A.A.

话题十

Demo展示

北京大学 STRUCT 团队

● 北京大学 STRUCT Vision Demo

