HDR-NeRF: High Dynamic Range Neural Radiance Fields

CVPR 2022

Xin Huang, Qi Zhang, Ying Feng, Hongdong Li, Xuan Wang, Qing Wang

First unit: Northwestern Polytechnical University

2022/10/16

Website: https://shsf0817.github.io/hdr-nerf/

Outline

Authorship

Background

Method

Experiment

■ Conclusion

Background-Novel View Synthesis

Task description

Rendered view

Captured views

Application

Virtual Reality

Facebook 3D Photo

Sports Live

Google Starline

Background-Novel View Synthesis

General pipeline

Scene pepresentation + Differentiable renderer

Background-Novel View Synthesis

Overview of Representations

Store an image as a 2D grid of RGB color values

Training a simple MLP to do this instead.

Build implicit representations of 3D scenes via MLP

Build implicit representations of 3D scenes via MLP

Kajiya et al. Ray tracing volume densities, SIGGRAPH 1984

Overall pipeline

Optimizing the NerF: Positional encoding

How to learn high frequency information?

Optimizing the NerF: Positional encoding

 $\gamma(p) = \left(\sin\left(2^0\pi p\right), \cos\left(2^0\pi p\right), \cdots, \sin\left(2^{L-1}\pi p\right), \cos\left(2^{L-1}\pi p\right)\right)$

Optimizing the NerF: Hierarchical volume sampling

"coarse" network

$$\hat{C}_c(\mathbf{r}) = \sum_{i=1}^{N_c} w_i c_i, \quad w_i = T_i (1 - \exp(-\sigma_i \delta_i))$$

Speed up training

"coarse" network + "fine" network

$$\mathcal{L} = \sum_{\mathbf{r}\in\mathcal{R}} \left[\left\| \hat{C}_c(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 + \left\| \hat{C}_f(\mathbf{r}) - C(\mathbf{r}) \right\|_2^2 \right]$$

Background-High dynamic range imaging (HDRI)

A typical pipeline

Background-High dynamic range imaging (HDRI)

Traditional CRF Estimation Algorithms

Limitation : Requires aligned multi-exposure images as input

Outline

Authorship

Background

Method

Experiment

■ Conclusion

Task description

(a) Input views

(b) Novel LDR views

(c) One of the novel HDR views

Recover HDR radiance fields from LDR views with different exposure

Radiance to color

Combinie volume rendering and tone-mapping

$$\widehat{C}(\mathbf{r}) = \int_{s_n}^{s_f} T(s)\sigma(\mathbf{r}(s))\mathbf{c}(\mathbf{r}(s), \mathbf{d}) \, ds
\mathbf{c}(\mathbf{r}, \Delta t) = g\left(\ln \mathbf{e}(\mathbf{r}) + \ln \Delta t(\mathbf{r})\right) \xrightarrow{} \widehat{C}(\mathbf{r}, \Delta t) = \int_{s_n}^{s_f} T(s)\sigma(\mathbf{r}(s))g(\ln \mathbf{e}(\mathbf{r}(s)) + \ln \Delta t(\mathbf{r})) \, ds
\sum_{k=1}^{k_f} \widehat{C}(\mathbf{r}, \Delta t) = g\left(\ln \mathbf{e}(\mathbf{r}) + \ln \Delta t(\mathbf{r})\right) \xrightarrow{} \widehat{C}(\mathbf{r}, \Delta t) = \int_{s_n}^{s_f} T(s)\sigma(\mathbf{r}(s))g(\ln \mathbf{e}(\mathbf{r}(s)) + \ln \Delta t(\mathbf{r})) \, ds$$

Pipeline

LDR Views Rendering

$$\hat{C}(\mathbf{r},\Delta t) = \int_{s_n}^{s_f} T(s)\sigma(\mathbf{r}(s))g(\ln \mathbf{e}(\mathbf{r}(s)) + \ln \Delta t(\mathbf{r})) \,\mathrm{d}s$$

Pipeline

HDR Views Rendering

$$\widehat{E}(\mathbf{r}) = \int_{s_n}^{s_f} T(s) \sigma(\mathbf{r}(s)) \mathbf{e}(\mathbf{r}(s)) \, \mathrm{d}s$$

Loss Function

Color reconstruction loss

$$\mathcal{L}_{c} = \sum_{\mathbf{r} \in \mathcal{R}(\mathbf{P})} \|\widehat{C}_{c}(\mathbf{r}, \Delta t) - C(\mathbf{r}, \Delta t)\|_{2}^{2} + \|\widehat{C}_{f}(\mathbf{r}, \Delta t) - C(\mathbf{r}, \Delta t)\|_{2}^{2}$$

Unit exposure loss $\mathcal{L}_u = \|g(0) - C_0\|_2^2$ C_0 : the midway of the pixel value

Outline

- Authorship
- Background
- Method

Experiment

■ Conclusion

Novel Views Randering

LDR GT

LDR output

HDR output

Estimated CRF by MLP

Comparisons with Debevec's method in real scene

Comparisons with GT CRF in synthetic scene

Quantitative comparisons with baseline methods on synthetic and real scenes

		LDR-OE (t_1, t_3, t_5)			LDR-NE (t_2, t_4)			HDR		
		PSNR ↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	LPIPS↓
NeRF [42]	Syn.	13.97	0.555	0.376	_	_				_
	Real	14.95	0.661	0.308						
NeRF-W ¹ [37]	Syn.	29.83	0.936	0.047	29.22	0.927	0.050	_		_
	Real	28.55	0.927	0.094	28.64	0.923	0.089		<u> </u>	
NeRF-GT ² [42]	Syn.	37.66	0.965	0.028	35.87	0.955	0.032	37.80	0.964	0.029
	Real	34.55	0.958	0.057	34.59	0.956	0.051			
Ours†	Syn.		_		_			_		_
	Real	30.37	0.944	0.075	29.37	0.938	0.078	—		
Ours	Syn.	39.07	0.973	0.026	37.53	0.966	0.024	36.40	0.936	0.018
	Real	31.63	0.948	0.069	31.43	0.943	0.069	2 C		

¹ The exposures of input views for NeRF-W are randomly selected from all five exposures to learn five appearance vectors for testing.

² A version of NeRF (as the upper bound of our method) that is trained from LDR images with consistent exposures or HDR images.

[†] An ablation study of our method that models the tone-mapping operations of RGB channels with a single MLP.

Novel LDR views

Video website: https://shsf0817.github.io/hdr-nerf/images/ldr1.mp4

Novel HDR views (Tone-mapped)

Video website: https://shsf0817.github.io/hdr-nerf/images/hdr1.mp4

Outline

- Authorship
- Background
- Method

Experiment

■ Conclusion

Conclusion

Contribution:

- Proposing a novel method to recover the high dynamic range neural radiance field from a set of LDR views with different exposures.
- Rendering novel HDR views without ground-truth HDR supervision.
- Producing high-fidelity LDR views with specified exposures.

Future work:

- Dynamic 3D scene
- HDR Video
- Joint with denoise in raw data

Thanks for watching.

徐一伦

yilunxu_buaa@163.com